Measurements of Multiple Pure Tone Propagation From a High Bypass Turbofan Rotor in an Internal Flow Facility

Author(s):  
Richard F. Bozak

Abstract An important noise source in modern high bypass ratio turbofans is from multiple pure tones produced by the fan during takeoff. An experiment conducted on a 1.5 pressure ratio fan in an internal flow facility provided dynamic pressure measurements to investigate multiple pure tone generation and propagation. Since multiple pure tones are generated by blade shock variation primarily due to the fan’s blade stagger angle differences, the blade stagger angles were measured with an array of over-the-rotor dynamic pressure transducers. Multiple pure tone measurements were made with 30 wall-mounted dynamic pressure transducers from 0.4 to 1.1 diameters upstream of the rotor. Measured blade stagger angle differences correspond to the the shock amplitude variation measured upstream. The acoustic field was extracted from the dynamic pressure signals using principal component analysis as well as duct mode beamforming. Shocks traveling out the inlet were found to couple to duct modes propagating at similar angles. Over-the-rotor acoustic liners appear to reduce rotor shock variation resulting in a reduction of sub-harmonic multiple pure tone sound pressure levels by 3–4 dB.

Author(s):  
Erio Benvenuti

This axial compressor design was primarily focused to increase the power rating of the current Nuovo Pignone PGT10 Heavy-Duty gas turbine by 10%. In addition, the new 11-stage design favourably compares with the existing 17-stage compressor in terms of simplicity and cost. By seating the flowpath and blade geometry, the new aerodynamic design can be applied to gas turbines with different power ratings as well. The reduction in the stage number was achieved primarily through the meridional flow-path redesign. The resulting higher blade peripheral speeds achieve larger stage pressure ratios without increasing the aerodynamic loadings. Wide chord blades keep the overall length unchanged thus assuring easy integration with other existing components. The compressor performance map was extensively checked over the speed range required for two-shaft gas turbines. The prototype unit was installed on a special PGT10 gas turbine setup, that permitted the control of pressure ratio independently from the turbine matching requirements. The flowpath instrumentation included strain-gages, dynamic pressure transducers and stator vane leading edge aerodynamic probes to determine individual stage characteristics. The general blading vibratory behavior was proved fully satisfactory. With minor adjustments to the variable stator settings the front stage aerodynamic matching was optimized and the design performance was achieved.


1997 ◽  
Vol 119 (3) ◽  
pp. 633-639 ◽  
Author(s):  
Erio Benvenuti

This axial compressor design was primarily focused to increase the power rating of the current Nuovo Pignone PGT10 Heavy-Duty gas turbine by 10 percent. In addition, the new 11-stage design favorably compares with the existing 17-stage compressor in terms of simplicity and cost. By scaling the flowpath and blade geometry, the new aerodynamic design can be applied to gas turbines with different power ratings as well. The reduction in the stage number was achieved primarily through the meridional flowpath redesign. The resulting higher blade peripheral speeds achieve larger stage pressure ratios without increasing the aerodynamic loadings. Wide chord blades keep the overall length unchanged thus assuring easy integration with other existing components. The compressor performance map was extensively checked over the speed range required for two-shaft gas turbines. The prototype unit was installed on a special PGT10 gas turbine setup, that permitted the control of pressure ratio independently from the turbine matching requirements. The flowpath instrumentation included strain gages, dynamic pressure transducers, and stator vane leading edge aerodynamic probes to determine individual stage characteristics. The general blading vibratory behavior was proved fully satisfactory. With minor adjustments to the variable stator settings, the front stage aerodynamic matching was optimized and the design performance was achieved.


Author(s):  
Gyorgy Szasz ◽  
Karen K. Fujikawa ◽  
Raju Ananth

Dynamic pressure measurements are often helpful in characterizing operating conditions within industrial piping. The most straight forward method to obtain this type of data is to mount pressure transducers on the piping [6]. The orifice necessary for these instruments, frequently presents an undesirable opening in the pressure boundary of the affected system. One type of pressure transducer employs a strain gage mounted internally on a membrane that is exposed to the pressure to be measured [4, 5]. The deformation of the membrane is proportional to the pressure to be measured and is reported as a pressure value. A union of these two concepts yields the idea of mounting the gages directly on the piping and thereby eliminating the need for compromising piping integrity. One of the challenges is performing this measurement in the presence of significant axial train that is not related to the internal pressure. In the recent past Structural Integrity Associates Inc. has successfully applied this innovative technique to several main steam piping systems in various nuclear power plants in the US. This paper will describe some of the considerations regarding compensation for interfering axial strains as well as provide sample results from existing installations.


Author(s):  
Adam M. Hurst ◽  
Joe VanDeWeert

Accurate static and dynamic pressure measurements in liquids, such as fuel, oil, and hydraulic fluid, are critical to the control and health monitoring of turbomachinery and aerospace systems. This work presents a theoretical and experimental study of the frequency response of pressure transducers and pressure measurement systems in liquid media. First, we theoretically predict the frequency response of pressure transducers based upon a lumped-parameter model. We then present a liquid-based dynamic pressure calibration test apparatus that validates this model by performing several critical measurements. This system first uses a vibrating liquid column to dynamically calibrate and experimentally determine the frequency response of a test pressure transducer, measurement system or geometry. Second, this calibration system experimentally extracts the bulk modulus of the fluid and the percent of entrained and/or dissolved air by volume. Bulk modulus is determined by measuring the speed of sound within the liquid and through static pressure loading while measuring the deflection of the liquid column. Bulk modulus and the entrained/dissolved gas content within the liquid greatly impact the observed frequency response of a pressure transducer or geometry. Gases, such as air, mixed or dissolved into a fluid can add substantial damping to the dynamic response of the fluid measurement system, which makes measurement of the bulk modulus and entrained and/or dissolved air critical for accurate measurement of the frequency response of a system when operating with a liquid media. All experimental results are compared to theoretical predictions.


2020 ◽  
Vol 87 (10) ◽  
pp. 630-636
Author(s):  
Oliver Slanina ◽  
Susanne Quabis ◽  
Robert Wynands

AbstractTo ensure the safety of users like hunters and sports shooters, the dynamic pressure inside an ammunition cartridge must not exceed a maximum value. We have investigated the reproducibility of the dynamic measurement of the gas pressure inside civilian ammunition cartridges during firing, when following the rules formulated by the Permanent International Commission for the Proof of Small Arms (C. I. P.). We find an in-house spread of 0.8 % between maximum and minimum pressure for runs with the same barrel and of 1.8 % among a set of three barrels. This sets a baseline for the expected agreement in measurement comparisons between different laboratories. Furthermore, a difference of more than 3 % is found in a preliminary study of the influence of ammunition storage conditions.


Author(s):  
Wangzhi Zou ◽  
Xiao He ◽  
Wenchao Zhang ◽  
Zitian Niu ◽  
Xinqian Zheng

The stability considerations of centrifugal compressors become increasingly severe with the high pressure ratios, especially in aero-engines. Diffuser is the major subcomponent of centrifugal compressor, and its performance greatly influences the stability of compressor. This paper experimentally investigates the roles of vanes in diffuser on component instability and compression system instability. High pressure ratio centrifugal compressors with and without vanes in diffuser are tested and analyzed. Rig tests are carried out to obtain the compressor performance map. Dynamic pressure measurements and relevant Fourier analysis are performed to identify complex instability phenomena in the time domain and frequency domain, including rotating instability, stall, and surge. For component instability, vanes in diffuser are capable of suppressing the emergence of rotating stall in the diffuser at full speeds, but barely affect the characteristics of rotating instability in the impeller at low and middle speeds. For compression system instability, it is shown that the use of vanes in diffuser can effectively postpone the occurrence of compression system surge at full speeds. According to the experimental results and the one-dimensional flow theory, vanes in diffuser turn the diffuser pressure rise slope more negative and thus improve the stability of compressor stage, which means lower surge mass flow rate.


2000 ◽  
Author(s):  
Wojtek J. Bock ◽  
Magdalena S. Nawrocka ◽  
Waclaw Urbanczyk

2018 ◽  
Vol 1064 ◽  
pp. 012055 ◽  
Author(s):  
Laijun Yan ◽  
Yong Chen ◽  
Lihu Zhang ◽  
Xu Zhang ◽  
Xianghong Yao ◽  
...  

1989 ◽  
Vol 111 (4) ◽  
pp. 748-754
Author(s):  
V. Salemann ◽  
J. M. Williams

A new method for modeling hot underexpanded exhaust plumes with cold model scale plumes in aerodynamic wind tunnel testing has been developed. The method is applicable to aeropropulsion testing where significant interaction between the exhaust and the free stream and aftbody may be present. The technique scales the model and nozzle external geometry, including the nozzle exit area, matches the model jet to free-stream dynamic pressure ratio to full-scale jet to free-stream dynamic pressure ratio, and matches the model thrust coefficient to full-scale thrust coefficient. The technique does not require scaling of the internal nozzle geometry. A generalized method of characteristic computer code was used to predict the plume shapes of a hot (γ = 1.2) half-scale nozzle of area ratio 3.2 and of a cold (γ = 1.4) model scale nozzle of area ratio 1.3, whose pressure ratio and area ratio were selected to satisfy the above criteria and other testing requirements. The plume shapes showed good agreement. Code validity was checked by comparing code results for cold air exhausting into a quiescent atmosphere to pilot surveys and shadowgraphs of model nozzle plumes taken in a static facility.


Sign in / Sign up

Export Citation Format

Share Document