scholarly journals Flow Distortion Into the Core Engine for an Installed Variable Pitch Fan in Reverse Thrust Mode

Author(s):  
David John Rajendran ◽  
Vassilios Pachidis

Abstract The flow distortion at core engine entry for a Variable Pitch Fan (VPF) in reverse thrust mode is described from a realistic flow field obtained using an integrated airframe-engine model. The model includes the VPF, core entry splitter, complete bypass nozzle flow path wrapped in a nacelle and installed to an airframe in landing configuration through a pylon. A moving ground plane to mimic the rolling runway is included. 3D RANS solutions are generated at two combinations of VPF stagger angle and rotational speed settings for the entire aircraft landing run from 140 to 20 knots. The internal reverse thrust flow field is characterized by bypass nozzle lip separation, pylon wake and recirculation of flow turned back from the VPF. A portion of the reverse stream flow turns 180° with separation at the splitter leading edge to feed the core engine. The core engine feed flow exhibits circumferential and radial non-uniformities that depend on the reverse flow development at different landing speeds. The temporal dependence of the distorted flow features is also explored by an URANS analysis. Total pressure and swirl angle distortion descriptors, as defined by the Society of Automotive Engineers (SAE) S-16 committee, and, total pressure loss into the core engine are described for the core feed flow at different operating conditions and landing speeds. It is observed that the radial intensity of total pressure distortion is critical to core engine operation, while the circumferential intensity is within acceptable limits. Therefore, the baseline sharp splitter edge is replaced by two larger rounded splitter edges of radii, ∼0.1x and ∼0.2x times the core duct height. This was found to reduce the radial intensity of total pressure distortion to acceptable levels. The description of the installed core feed flow distortion, as described in this study, is necessary to ascertain stable core engine operation, which powers the VPF in reverse thrust mode.

2021 ◽  
pp. 1-30
Author(s):  
David John Rajendran ◽  
Vassilios Pachidis

Abstract The flow distortion at core engine entry for a Variable Pitch Fan (VPF) in reverse thrust mode is described from a realistic flowfield obtained using an integrated airframe-engine-VPF research model. 3D RANS solutions are generated for the complete aircraft landing run from 140 to 20 knots at different VPF settings. The internal reverse thrust flowfield is characterized by nozzle lip separation, pylon wake and recirculation of flow turned back from the VPF. A portion of the reverse flow turns 180° with separation at the splitter edge to feed the core engine. The core feed flow exhibits circumferential and radial non-uniformities that depend on the reverse flow development at different landing speeds. The temporal dependence of the distorted flow features is also explored by an URANS analysis. Total pressure and swirl angle distortion descriptors, and total pressure loss are described for the core feed flow at different VPF settings and landing speeds. It is observed that the radial intensity of total pressure distortion is critical to core engine operation, while the circumferential intensity is within acceptable limits. Therefore, the baseline sharp splitter edge is replaced by two larger rounded splitter edges of radii, ∼0.1x and ∼0.2x times the core duct height. This was found to reduce the radial intensity of total pressure distortion to acceptable levels. The description of the installed core feed flow distortion, as in this study, is necessary to ascertain stable core engine operation, which powers the VPF in reverse thrust mode.


Author(s):  
David John Rajendran ◽  
Vassilios Pachidis

Abstract The installed Variable Pitch Fan (VPF) reverse thrust flow field is obtained from the flow solution of an integrated airframe-engine-VPF research model for the complete reverser engagement regime during the aircraft landing run. The reverse thrust flow field indicates that the reverse flow out of the nacelle inlet is washed downstream by the freestream. Consequently, reverse flow enters the engine through the bypass nozzle from a 180° turn of the washed-down stream. This results in a region of separated flow at the nozzle lip that acts as a blockage to the reverse flow entry into the engine. To mitigate the blockage issue, a smooth guidance of the reverse flow into the engine can be achieved by using an inflatable rubber lip that would define a bell-mouth like geometric feature with a round radius at the nacelle exit. In nominal engine operation, the rubber lip would be stowed flush within the contours of the nacelle surface. The design space of the rubber lip is studied by considering different rounding radii and locations of the turn radius with respect to the nacelle trailing edge. It is observed that a rounding radius of 0.1x nacelle length is sufficient to reduce the blockage and increase the ingested reverse flow by 47% to 18% in the 140 to 40 knots landing speed range. The inflatable rubber lip represents a design modification that can improve VPF reverse thrust operation, in cases where an augmentation of reverse thrust capability is desired


2021 ◽  
Author(s):  
David John Rajendran ◽  
Vassilios Pachidis

Abstract The installed Variable Pitch Fan (VPF) reverse thrust flow field is obtained from the flow solution of an integrated airframe-engine research model for the complete reverser engagement regime during the aircraft landing run from 140 knots to 40 knots. The model includes a twin-engine airframe, complete flow path representation of a future 40000 lbf high bypass ratio geared turbofan engine, and a bespoke reverse flow-capable VPF design. The reverse thrust flow field, at all speeds, indicates that the reverse flow out of the nacelle inlet is washed downstream by the freestream towards the engine exit regions. Consequently, reverse flow enters the engine through the bypass nozzle from a 180° turn of the washed-down stream. This results in a region of circumferentially varying separated flow at the nozzle lip that acts as a blockage to the reverse flow entry into the engine. To mitigate the blockage issue, a smooth guidance of the reverse flow into the engine to avoid separation can be achieved by using an inflatable rubber lip that would define a bell-mouth like geometric feature with a round radius at the nacelle exit region. In nominal engine operation, the rubber lip would be stowed flush within the contours of the optimized nacelle surface. The design space of the rubber lip is studied by considering different rounding radii and locations of the turn radius with respect to the nacelle trailing edge. The choices of the design parameters are chosen by considering the nacelle edge thickness, inflation air volume requirement, weight, and thickness of support structures. The effect of these designs on the reverse thrust flow field is studied by incorporating the designs into the integrated model, with realistic installation related restrictions. It is observed that a rounding radius of 0.1x nacelle length is sufficient to reduce the blockage and increase the ingested reverse flow by 47% to 18% in the 140 to 40 knots landing speed range. The inflatable rubber lip represents a design modification that can aid in the improvement of VPF reverse thrust operation, in cases where an augmentation of reverse thrust capability over the baseline is desired.


Author(s):  
David John Rajendran ◽  
Vassilios Pachidis

Abstract The installed flow field for a Variable Pitch Fan (VPF) operating in reverse thrust for the complete aircraft landing run is described in this paper. To do this, a VPF design to generate reverse thrust by reversing airflow direction is developed for a representative 40000 lbf modern high bypass ratio engine. Thereafter, to represent the actual flow conditions that the VPF would face, an engine model that includes the nacelle, core inlet splitter, outlet guide vanes, bypass nozzle, core exhaust duct, aft-body plug and core nozzle is designed. The engine model with the VPF is attached to a representative airframe in landing configuration to include the effects of installation. A rolling ground plane that mimics the runway during the landing run is also included to complete the model definition. 3D RANS solutions are carried out for two different VPF stagger angle settings and rotational speeds to obtain the fan flow field. The dynamic installed VPF flow field is characterized by the interaction of the free stream and the reverse stream flows. The two streams meet in a shear layer in the fan passages and get deflected radially outwards before turning back onto themselves. The flow field changes with stagger setting, fan rotational speed and the aircraft landing speed because of the consequent changes in the momentum of the two streams. The description of the installed VPF flow field as generated in this study is necessary to: a) qualify VPF designs that are typically designed by considering only the uninstalled static flow field b) choose the VPF operating setting for different stages of the aircraft landing run.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
David John Rajendran ◽  
Vassilios Pachidis

Abstract The installed flow field for a variable pitch fan (VPF) operating in reverse thrust for the complete aircraft landing run is described in this paper. To do this, a VPF design to generate reverse thrust by reversing airflow direction is developed for a representative 40,000 lbf modern high bypass ratio engine. Thereafter, to represent the actual flow conditions that the VPF would face, an engine model that includes the nacelle, core inlet splitter, outlet guide vanes, bypass nozzle, core exhaust duct, aft-body plug, and core nozzle is designed. The engine model with the VPF is attached to a representative airframe in landing configuration to include the effects of installation. A rolling ground plane that mimics the runway during the landing run is also included to complete the model definition. Three-dimensional (3D) Reynolds-averaged Navier–Stokes (RANS) solutions are carried out for two different VPF stagger angle settings and rotational speeds to obtain the fan flow field. The dynamic installed VPF flow field is characterized by the interaction of the freestream and the reverse stream flows. The two streams meet in a shear layer in the fan passages and get deflected radially outward before turning back onto themselves. The flow field changes with stagger setting, fan rotational speed, and the aircraft landing speed because of the consequent changes in the momentum of the two streams. The description of the installed VPF flow field as generated in this study is necessary to (a) qualify VPF designs that are typically designed by considering only the uninstalled static flow field and (b) choose the VPF operating setting for different stages of the aircraft landing run.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4136
Author(s):  
Clemens Gößnitzer ◽  
Shawn Givler

Cycle-to-cycle variations (CCV) in spark-ignited (SI) engines impose performance limitations and in the extreme limit can lead to very strong, potentially damaging cycles. Thus, CCV force sub-optimal engine operating conditions. A deeper understanding of CCV is key to enabling control strategies, improving engine design and reducing the negative impact of CCV on engine operation. This paper presents a new simulation strategy which allows investigation of the impact of individual physical quantities (e.g., flow field or turbulence quantities) on CCV separately. As a first step, multi-cycle unsteady Reynolds-averaged Navier–Stokes (uRANS) computational fluid dynamics (CFD) simulations of a spark-ignited natural gas engine are performed. For each cycle, simulation results just prior to each spark timing are taken. Next, simulation results from different cycles are combined: one quantity, e.g., the flow field, is extracted from a snapshot of one given cycle, and all other quantities are taken from a snapshot from a different cycle. Such a combination yields a new snapshot. With the combined snapshot, the simulation is continued until the end of combustion. The results obtained with combined snapshots show that the velocity field seems to have the highest impact on CCV. Turbulence intensity, quantified by the turbulent kinetic energy and turbulent kinetic energy dissipation rate, has a similar value for all snapshots. Thus, their impact on CCV is small compared to the flow field. This novel methodology is very flexible and allows investigation of the sources of CCV which have been difficult to investigate in the past.


Author(s):  
Maxime Lecoq ◽  
Nicholas Grech ◽  
Pavlos K. Zachos ◽  
Vassilios Pachidis

Aero-gas turbine engines with a mixed exhaust configuration offer significant benefits to the cycle efficiency relative to separate exhaust systems, such as increase in gross thrust and a reduction in fan pressure ratio required. A number of military and civil engines have a single mixed exhaust system designed to mix out the bypass and core streams. To reduce mixing losses, the two streams are designed to have similar total pressures. In design point whole engine performance solvers, a mixed exhaust is modelled using simple assumptions; momentum balance and a percentage total pressure loss. However at far off-design conditions such as windmilling and altitude relights, the bypass and core streams have very dissimilar total pressures and momentum, with the flow preferring to pass through the bypass duct, increasing drastically the bypass ratio. Mixing of highly dissimilar coaxial streams leads to complex turbulent flow fields for which the simple assumptions and models used in current performance solvers cease to be valid. The effect on simulation results is significant since the nozzle pressure affects critical aspects such as the fan operating point, and therefore the windmilling shaft speeds and air mass flow rates. This paper presents a numerical study on the performance of a lobed mixer under windmilling conditions. An analysis of the flow field is carried out at various total mixer pressure ratios, identifying the onset and nature of recirculation, the flow field characteristics, and the total pressure loss along the mixer as a function of the operating conditions. The data generated from the numerical simulations is used together with a probabilistic approach to generate a response surface in terms of the mass averaged percentage total pressure loss across the mixer, as a function of the engine operating point. This study offers an improved understanding on the complex flows that arise from mixing of highly dissimilar coaxial flows within an aero-gas turbine mixer environment. The total pressure response surface generated using this approach can be used as look-up data for the engine performance solver to include the effects of such turbulent mixing losses.


Author(s):  
Ilias Bosdas ◽  
Michel Mansour ◽  
Anestis I. Kalfas ◽  
Reza S. Abhari ◽  
Shigeki Senoo

Modern steam turbines need to operate efficiently and safely over a wide range of operating conditions. This paper presents a unique unprecedented set of time-resolved steam flowfield measurements from the exit of the last two stages of a low pressure (LP) steam turbine under various volumetric massflow conditions. The measurements were performed in the steam turbine test facility in Hitachi city in Japan. A newly developed fast response probe equipped with a heated tip to operate in wet steam flows was used. The probe tip is heated through an active control system using a miniature high-power cartridge heater developed in-house. Three different operating points, including two reduced massflow conditions, are compared and a detailed analysis of the unsteady flow structures under various blade loads and wetness mass fractions is presented. The measurements show that at the exit of the second to last stage the flow field is highly three dimensional. The measurements also show that the secondary flow structures at the tip region (shroud leakage and tip passage vortices) are the predominant sources of unsteadiness at 85% span. The high massflow operating condition exhibits the highest level of periodical total pressure fluctuation compared to the reduced massflow conditions at the inlet of the last stage. In contrast at the exit of the last stage, the reduced massflow operating condition exhibits the largest aerodynamic losses near the tip. This is due to the onset of the ventilation process at the exit of the LP steam turbine. This phenomenon results in 3 times larger levels of relative total pressure unsteadiness at 93% span, compared to the high massflow condition. This implies that at low volumetric flow conditions the blades will be subjected to higher dynamic load fluctuations at the tip region.


1976 ◽  
Vol 18 (1) ◽  
pp. 25-38 ◽  
Author(s):  
E. M. Greitzer ◽  
H. R. Griswol

An analytical and experimental study of axial compressor-diffuser interaction in circumferentially non-uniform flow is reported. An analysis of non-axisymmetric flow in an annular diffuser is presented, based on an inviscid rotational core flow plus the use of a diffuser effective area ratio to account for boundary layer blockage. The analysis is applied to the prediction of the diffuser flow field associated with the presence of a circumferential total pressure distortion. It is found that large static pressure non-uniformities can exist at the inlet of diffusers that are short compared with their mean circumferences, as is usually the case in turbomachinery applications. The analysis is coupled to an asymmetric compressor flow field prediction to provide a method for calculating the effect of an exit diffuser on compressor performance with distortion. It is shown that the velocity defect seen by the compressor can be substantially increased by the presence of the diffuser. The experiments were directed at assessing the method used to predict the flow in the diffuser. Measurements were carried out of the inlet static pressure distortion associated with a circumferentially non-uniform total pressure distribution. The results are found to be in good agreement with the theoretical predictions.


Author(s):  
Sherif A. Abdelfattah ◽  
Hicham A. Chibli ◽  
M. T. Schobeiri

This paper describes numerical aerodynamic investigations of a two-stage, high pressure axial turbine at design and off-design operating conditions. The flow field in a high pressure turbine is highly complex due to unsteadiness of the flow and the various effects of blade row interaction. Blade loss mechanisms generally include primary and secondary loss mechanisms. Examples of primary loss mechanisms include boundary layer losses, shock losses and mixing losses, whereas examples of secondary losses include tip leakage losses and end wall losses which both create secondary flow characteristics. Although modern numerical analysis techniques have provided good understanding of the flow field, it is still difficult to accurately predict impact due to the aforementioned loss effects. This is generally due to errors predicting in boundary layers, transition as well as false entropy generation due to numerical dissipation. When a turbine is operated at off-design conditions the primary and secondary loss effects are further increased and create further reductions in engine efficiency. In this study a numerical model of the two-stage axial turbine was constructed and run under boundary conditions designed to mimic the operating conditions applied during engine operation. The shear stress transport (SST) turbulence model was selected for its versatility in turbomachinery applications. A comparison was made between both experimentally measured efficiencies and numerically predicted efficiencies.


Sign in / Sign up

Export Citation Format

Share Document