Contribution of Tip Shroud Cavity to Loss Generation in the Main Flow of a Low Pressure Turbine Using Steady and Unsteady Numerical Approach

Author(s):  
Maxime Perini ◽  
Nicolas Binder ◽  
Yannick Bousquet ◽  
Eric Schwartz

Abstract A lot of studies on turbomachinery main flow optimisation have been performed in order to reach current efficiencies. To go further in the study of aerodynamic losses sources, a better understanding of technological effects is required. Tip shroud cavities in low pressure turbine is an example. Indeed, the by-pass flow causes additional pressure losses. In addition, interactions between main flow and cavity flows, as well as the re-entering flow, cause mixing losses and modifications of flow angle. This paper investigates the contribution of tip shroud cavities in a low pressure turbine stage on the overall performance and flow structures. The ability of a steady simulation to predict this kind of flow by comparison with time-resolved results is poorly documented in the literature, and is an objective of this paper. Computations are compared with experimental data from low speed turbine test rig. Entropy production shows that a large amount of additional losses comes from the cavities themselves whichever the steady or unsteady treatment of the simulation. Additional losses generated in the rotor are more dependent on the presence of the shroud or not than the unsteady feature of the simulations.

2021 ◽  
Author(s):  
Maxime Perini ◽  
Nicolas Binder ◽  
Yannick Bousquet ◽  
Eric Schwartz

Author(s):  
Francesco Montomoli ◽  
Michela Massini ◽  
Nicola Maceli ◽  
Massimiliano Cirri ◽  
Luca Lombardi ◽  
...  

Increased computational capabilities make available for the aero/thermal designers new powerful tools to include more geometrical details, improving the accuracy of the simulations, and reducing design costs and time. In the present work, a low-pressure turbine was analyzed, modeling the rotor-stator including the wheel space region. Attention was focused on the interaction between the coolant and the main flow in order to obtain a more detailed understanding of the behavior of the angel wings, to evaluate the wall heat flux distribution, and to prevent hot gas ingestion. Issues of component reliability related to thermal stress require accurate modeling of the turbulence and unsteadiness of the flow field. To satisfy this accuracy requirement, a full 3D URANS simulation was carried out. A reduced count ratio technique was applied in order to decrease numerical simulation costs. The study was carried out to investigate a new two-stage Low Pressure Turbine from GE Infrastructure Oil&Gas to be coupled to a new aeroderivative gas generator, the LM2500+G4, developed by GE Infrastructure, Aviation.


2021 ◽  
Author(s):  
Tobias Schubert ◽  
Reinhard Niehuis

Abstract An investigation of endwall loss development is conducted using the T106A low-pressure turbine cascade. (U)RANS simulations are complemented by measurements under engine relevant flow conditions (M2th = 0.59, Re2th = 2·105). The effects of unsteady inflow conditions and varying inlet endwall boundary layer are compared in terms of secondary flow attenuation downstream of the blade passage, analyzing steady, time-averaged, and time-resolved flow fields. While both measures show similar effects in the turbine exit plane, the upstream loss development throughout the blade passage is quite different. A variation of the endwall boundary layer alters the slope of the axial loss generation beginning around the midpoint of the blade passage. Periodically incoming wakes, however, cause a spatial redistribution of the loss generation with a premature loss increase due to wake interaction in the front part of the passage followed by an attenuation of the profile- and secondary loss generation in the aft section of the blade passage. Ultimately, this leads to a convergence of the downstream loss values in the steady and unsteady inflow cases.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Jerrit Dähnert ◽  
Christoph Lyko ◽  
Dieter Peitsch

Based on detailed experimental work conducted at a low speed test facility, this paper describes the transition process in the presence of a separation bubble with low Reynolds number, low free-stream turbulence, and steady main flow conditions. A pressure distribution has been created on a long flat plate by means of a contoured wall opposite of the plate, matching the suction side of a modern low-pressure turbine aerofoil. The main flow conditions for four Reynolds numbers, based on suction surface length and nominal exit velocity, were varied from 80,000 to 300,000, which covers the typical range of flight conditions. Velocity profiles and the overall flow field were acquired in the boundary layer at several streamwise locations using hot-wire anemometry. The data given is in the form of contours for velocity, turbulence intensity, and turbulent intermittency. The results highlight the effects of Reynolds number, the mechanisms of separation, transition, and reattachment, which feature laminar separation-long bubble and laminar separation-short bubble modes. For each Reynolds number, the onset of transition, the transition length, and the general characteristics of separated flow are determined. These findings are compared to the measurement results found in the literature. Furthermore, the experimental data is compared with two categories of correlation functions also given in the literature: (1) correlations predicting the onset of transition and (2) correlations predicting the mode of separated flow transition. Moreover, it is shown that the type of instability involved corresponds to the inviscid Kelvin-Helmholtz instability mode at a dominant frequency that is in agreement with the typical ranges occurring in published studies of separated and free-shear layers.


Author(s):  
Franz F. Blaim ◽  
Roland E. Brachmanski ◽  
Reinhard Niehuis

The objective of this paper is to analyze the influence of incoming periodic wakes, considering the variable width, on the integral total pressure loss for two low pressure turbine (LPT) airfoils. In order to reduce the overall weight of a LPT, the pitch to chord ratio was continuously increased, during the past decades. However, this increase encourages the development of the transition phenomena or even flow separation on the suction side of the blade. At low Reynolds numbers, large separation bubbles can occur there, which are linked with high total pressure losses. The incoming wakes of the upstream blades are known to trigger early transition, leading to a reduced risk of flow separation and hence minor integral total pressure losses caused by separation. For the further investigation of these effects, different widths of the incoming wakes will be examined in detail, here. This variation is carried out by using the numerical Unsteady Reynolds Averaged Solver TRACE developed by the DLR Cologne in collaboration with MTU Aero Engines AG. For the variation of the width of the wakes, a variable boundary condition was modeled, which includes the wake vorticity parameters. The width of the incoming wakes was used as the relevant variable parameter. The implemented boundary condition models the unsteady behavior of the incoming wakes by the variation of the velocity profile, using a prescribed frequenc. TRACE can use two different transition models; the main focus here is set to the γ–Reθt transition model, which uses local variables in a transport equation, to trigger the transition within the turbulence transport equation system. The experimental results were conducted at the high speed cascade open loop test facility at the Institute for Jet Propulsion at the University of the German Federal Armed Forces in Munich. For the investigation presented here, two LPT profiles — which were designed with a similar inlet angle, turning, and pitch are analyzed. However, with a common exit Mach number and a similar Reynolds number range between 40k and 400k, one profile is front loaded and the other one is aft loaded. Numerical unsteady results are in good agreement with the conducted measurements. The influence of the width of the wake on the time resolved transition behavior, represented by friction coefficient plots and momentum loss thickness will be analyzed in this paper.


Author(s):  
Fumiaki Watanabe ◽  
Takeshi Nakamura ◽  
Ken-ichi Shinohara

The structural reliability of composite parts for aircraft is established through the “building block” approach, which is a series of tests that are conducted using specimens of various levels of complexity. In this approach, the failure modes and criteria are validated step by step with tests and analysis at coupon, element, sub-component, and component levels. IHI is developing ceramic matrix composite (CMC) components for aircraft engines to realize performance improvement and weight reduction. We conducted the concept design of CMC low pressure turbine (LPT) blade with the building block approach. In this paper, we present the processes and results of the design, which was supported by a series of tests. Typical low pressure turbine blade has dovetail, airfoil and tip shroud. Each element has different function and characteristic shape. In order to select the configuration of CMC LPT blade, we conducted screening tests for each element. The function of dovetail is to sustain the connection with blade and disk against centrifugal force. The failure modes and strength of dovetail elements were examined by static load tests and cyclic load tests. The configuration of airfoil was selected by modal tests. The function of tip shroud is forming gas passage and reducing the leakage flow, therefore this portion needs to sustain the shape against the centrifugal force and the rubbing force. The feasibility of tip shroud was verified by spin tests and rubbing tests. The initial CMC LPT blades were designed as combination of the selected elements by these screening tests. Prototype parts were made and tested to check the manufacturability and the structural feasibility. The static strength to the centrifugal force was examined by spin test. The durability to vibration was examined by HCF test.


Author(s):  
Julien Clinckemaillie ◽  
Tony Arts

This paper aims at evaluating the characteristics of the wakes periodically shed by the rotating bars of a spoked-wheel type wake generator installed upstream of a high-speed low Reynolds linear low-pressure turbine blade cascade. Due to the very high bar passing frequency obtained with the rotating wake generator (fbar = 2.4−5.6 kHz), a fast-response pressure probe equipped with a single 350 mbar absolute Kulite sensor has been used. In order to measure the inlet flow angle fluctuations, an angular aerodynamic calibration of the probe allowed the use of the virtual three-hole mode; additionally, yielding yaw corrected periodic total pressure, static pressure and Mach number fluctuations. The results are presented for four bar passing frequencies (fbar = 2.4/3.2/4.6/5.6 kHz), each tested at three isentropic inlet Mach numbers M1,is = 0.26/0.34/0.41 and for Reynolds numbers varying between Re1,is = 40,000 and 58,000, thus covering a wide range of engine representative flow coefficients (ϕ = 0.44−1.60). The measured wake characteristics show fairly good agreement with the theory of fixed cylinders in a cross-flow and the evaluated total pressure losses and flow angle variations generated by the rotating bars show fairly good agreement with theoretical results obtained from a control volume analysis.


Author(s):  
Charles W. Haldeman ◽  
Michael G. Dunn ◽  
John W. Barter ◽  
Brian R. Green ◽  
Robert F. Bergholz

Aerodynamic measurements were acquired on a modern single-stage, transonic, high-pressure turbine with the adjacent low-pressure turbine vane row (a typical civilian one and one-half stage turbine rig) to observe the effects of low-pressure turbine vane clocking on overall turbine performance. The turbine rig (loosely referred to in this paper as the stage) was operated at design corrected conditions using the Ohio State University Gas Turbine Laboratory Turbine Test Facility (TTF). The research program utilized uncooled hardware in which all three airfoils were heavily instrumented at multiple spans to develop a full clocking dataset. The low-pressure turbine vane row (LPTV) was clocked relative to the high-pressure turbine vane row (HPTV). Various methods were used to evaluate the influence of clocking on the aeroperformance (efficiency) and the aerodynamics (pressure loading) of the LPTV, including time-resolved and time-averaged measurements. A change in overall efficiency of approximately 2–3% due to clocking effects is demonstrated and could be observed using a variety of independent methods. Maximum efficiency is obtained when the time-average surface pressures are highest on the LPTV and the time-resolved surface pressure (both in the time domain and frequency domain) show the least amount of variation. The overall effect is obtained by integrating over the entire airfoil, as the three-dimensional effects on the LPTV surface are significant. This experimental data set validates several computational research efforts that suggested wake migration is the primary reason for the perceived effectiveness of vane clocking. The suggestion that wake migration is the dominate mechanism in generating the clocking effect is also consistent with anecdotal evidence that fully cooled engine rigs do not see a great deal of clocking effect. This is consistent since the additional disturbances induced by the cooling flows and/or the combustor make it extremely difficult to find an alignment for the LPTV given the strong 3D nature of modern high-pressure turbine flows.


Author(s):  
Jerrit Da¨hnert ◽  
Christoph Lyko ◽  
Dieter Peitsch

Based on detailed experimental work conducted at a low speed test facility, this paper describes the transition process in the presence of a separation bubble with low Reynolds number, low free-stream turbulence, and steady main flow conditions. A pressure distribution has been created on a long flat plate by means of a contoured wall opposite of the plate, matching the suction side of a modern low-pressure turbine aerofoil. The main flow conditions for four Reynolds numbers, based on suction surface length and nominal exit velocity, were varied from 80,000 to 300,000, which covers the typical range of flight conditions. Velocity profiles and the overall flow field were acquired in the boundary layer at several streamwise locations using hot-wire anemometry. The data given is in the form of contours for velocity, turbulence intensity, and turbulent intermittency. The results highlight the effects of Reynolds number, the mechanisms of separation, transition, and reattachment, which feature laminar separation-long bubble and laminar separation-short bubble modes. For each Reynolds number, the onset of transition, the transition length, and the general characteristics of separated flow are determined. These findings are compared to the measurement results found in the literature. Furthermore, the experimental data is compared with two categories of correlation functions also given in the open literature: (1) correlations predicting the onset of transition and (2) correlations predicting the mode of separated flow transition. Moreover, it is shown that the type of instability involved corresponds to the inviscid Kelvin-Helmholtz instability mode at a dominant frequency that is in agreement with the typical ranges occurring in published studies of separated and free-shear layers.


Author(s):  
D. Lengani ◽  
D. Simoni ◽  
M. Ubaldi ◽  
P. Zunino ◽  
F. Bertini

Abstract The boundary layer developing over the suction side of a low pressure turbine cascade operating under unsteady inflow conditions has been experimentally investigated. Time-resolved Particle Image Velocimetry (PIV) measurements have been performed in two orthogonal planes, the blade to blade and a wall parallel plane embedded within the boundary layer, for two different wake reduced frequencies. Proper Orthogonal Decomposition (POD) has been used to analyze the data and to provide an interpretation of the most significant flow structures for each phase of the wake passing cycle. To this purpose, a POD based procedure that sorts the data synchronizing the measurements of the two planes has been developed. Phase averaged data are then obtained for both cases. Moreover, once properly sorted, POD has been applied to sub-ensembles of data at the same relative phase within the wake passing cycle. Detailed information on the most energetic turbulent structures at a particular phase are obtained with this procedure (called phased POD), overcoming the limit of classical phase average that just provides a statistical representation of the turbulence field. Furthermore, the synchronization of the measurements in the two planes allows the computation of the characteristic dimension of boundary layer structures that are responsible for transition. These structures are often identified as vortical filaments parallel to the wall, typically referred to as boundary layer streaks. The largest and most energetic structures are observed when the wake centerline passes over the rear part of the suction side, and they appear practically the same for both reduced frequencies. The passing wake forces transition leading to the breakdown of the boundary layer streaks. Otherwise, the largest differences between the low and high reduced frequency are observed in the calmed region. The post-processing of these two planes further allowed us to compute the spacing of the streaks and make it non-dimensional by the boundary layer displacement thickness observed for each phase. The non-dimensional value of the streaks spacing is about constant, irrespective of the reduced frequency.


Sign in / Sign up

Export Citation Format

Share Document