Numerical Studies of Novel Aero Engine Secondary Combustors for Low-NOx Emissions

Author(s):  
Andrew Rolt ◽  
Victor Martínez Bueno ◽  
Mirko Romanelli ◽  
Xiaoxiao Sun ◽  
Pierre Gauthier ◽  
...  

Abstract Gas turbine thermal efficiency and fuel burn are very dependent on turbine entry temperature and overall pressure ratio (OPR). Unfortunately, increases in these two parameters compromise other key aspects of engine operation and tend to increase emissions of nitrogen oxides (NOx). The European Horizon 2020 ULTIMATE project researched advanced-cycle aero engines with synergistic combinations of novel technologies to increase thermal efficiency without increasing emissions. One candidate technology was the addition of secondary combustion to increase the mean temperature of heat addition to improve thermal efficiency while limiting the primary combustor flame temperatures and NOx formation. However, an overall reduction in NOx also requires the secondary combustor to be a low-NOx design. This paper describes numerical studies carried out on novel aero engine secondary combustor concepts developed in two MSc-thesis research projects. The studies have explored the potential of oxy-poor-flame combustion concepts. These annular combustor designs featured two distinct regions: (i) the vortex zone, which promotes recirculation of combustion products, a prerequisite for low-oxygen combustion, and (ii) a through-flow region where part of the incoming flow bypasses the vortex before the flows mix again. These studies have demonstrated the advantages and some limitations of the proposed designs and emissions assessments in comparison with previous secondary combustor studies. They suggest very low NOx is achievable with oxy-poor combustion, but will be more difficult if the incoming oxygen levels are above 10%. More-accurate assessments will require LES modelling and inclusion of the primary combustor in the simulations. However, if the low overall NOx emissions would include relatively higher levels of nitrous oxide (N2O) then this might raise concerns with respect to global warming.

Author(s):  
Konstantinos G. Kyprianidis ◽  
Tomas Grönstedt ◽  
S. O. T. Ogaji ◽  
P. Pilidis ◽  
R. Singh

Reduction in CO2 emissions is strongly linked with the improvement of engine specific fuel consumption, as well as the reduction in engine nacelle drag and weight. Conventional turbofan designs, however, that reduce CO2 emissions—such as increased overall pressure ratio designs—can increase the production of NOx emissions. In the present work, funded by the European Framework 6 collaborative project NEW Aero engine Core concepts (NEWAC), an aero-engine multidisciplinary design tool, Techno-economic, Environmental, and Risk Assessment for 2020 (TERA2020), has been utilized to study the potential benefits from introducing heat-exchanged cores in future turbofan engine designs. The tool comprises of various modules covering a wide range of disciplines: engine performance, engine aerodynamic and mechanical design, aircraft design and performance, emissions prediction and environmental impact, engine and airframe noise, as well as production, maintenance and direct operating costs. Fundamental performance differences between heat-exchanged cores and a conventional core are discussed and quantified. Cycle limitations imposed by mechanical considerations, operational limitations and emissions legislation are also discussed. The research work presented in this paper concludes with a full assessment at aircraft system level that reveals the significant potential performance benefits for the intercooled and intercooled recuperated cycles. An intercooled core can be designed for a significantly higher overall pressure ratio and with reduced cooling air requirements, providing a higher thermal efficiency than could otherwise be practically achieved with a conventional core. Variable geometry can be implemented to optimize the use of the intercooler for a given flight mission. An intercooled recuperated core can provide high thermal efficiency at low overall pressure ratio values and also benefit significantly from the introduction of a variable geometry low pressure turbine. The necessity of introducing novel lean-burn combustion technology to reduce NOx emissions at cruise as well as for the landing and take-off cycle, is demonstrated for both heat-exchanged cores and conventional designs. Significant benefits in terms of NOx reduction are predicted from the introduction of a variable geometry low pressure turbine in an intercooled core with lean-burn combustion technology.


Author(s):  
Konstantinos G. Kyprianidis ◽  
Tomas Gro¨nstedt ◽  
S. O. T. Ogaji ◽  
P. Pilidis ◽  
R. Singh

Reduction of CO2 emissions is strongly linked with the improvement of engine specific fuel consumption, as well as the reduction of engine nacelle drag and weight. Conventional turbofan designs however that reduce CO2 emissions — such as increased OPR designs — can increase the production of NOx emissions. In the present work, funded by the European Framework 6 collaborative project NEWAC, an aero engine multidisciplinary design tool, TERA2020, has been utilised to study the potential benefits from introducing heat-exchanged cores in future turbofan engine designs. The tool comprises of various modules covering a wide range of disciplines: engine performance, engine aerodynamic and mechanical design, aircraft design and performance, emissions prediction and environmental impact, engine and airframe noise, as well as production, maintenance and direct operating costs. Fundamental performance differences between heat-exchanged cores and a conventional core are discussed and quantified. Cycle limitations imposed by mechanical considerations, operational limitations and emissions legislation are also discussed. The research work presented in this paper concludes with a full assessment at aircraft system level that reveals the significant potential performance benefits for the inter-cooled and intercooled recuperated cycles. An intercooled core can be designed for a significantly higher OPR and with reduced cooling air requirements, providing a higher thermal efficiency than could otherwise be practically achieved with a conventional core. Variable geometry can be implemented to optimise the use of the intercooler for a given flight mission. An intercooled recuperated core can provide high thermal efficiency at low OPR values and also benefit significantly from the introduction of a variable geometry low pressure turbine. The necessity of introducing novel lean-burn combustion technology, to reduce NOx emissions, at cruise as well as for the landing and take-off cycle, is demonstrated for both heat-exchanged cores and conventional designs. Significant benefits in terms of NOx reduction are predicted from the introduction of a variable geometry low pressure turbine in an intercooled core with lean-burn combustion technology.


2021 ◽  
Author(s):  
Andrew Rolt ◽  
Victor Mart\xednez Bueno ◽  
Mirko Romanelli ◽  
Xiaoxiao Sun ◽  
Pierre Gauthier ◽  
...  

Author(s):  
Hidetoshi Kuroki ◽  
Shigeo Hatamiya ◽  
Takanori Shibata ◽  
Tomomi Koganezawa ◽  
Nobuaki Kizuka ◽  
...  

The advanced humid air turbine (AHAT) system improves the thermal efficiency of gas turbine power generation by using a humidifier, a water atomization cooling (WAC) system, and a heat recovery system, thus eliminating the need for an extremely high firing temperature and pressure ratio. The following elemental technologies have been developed to realize the AHAT system: (1) a broad working range and high-efficiency compressor that utilizes the WAC system to reduce compression work, (2) turbine blade cooling techniques that can withstand high heat flux due to high-humidity working gas, and (3) a combustor that achieves both low NOx emissions and a stable flame condition with high-humidity air. A gas turbine equipped with a two-stage radial compressor (with a pressure ratio of 8), two-stage axial turbine, and a reverse-flow type of single-can combustor has been developed based on the elemental technologies described above. A pilot plant that consists of a gas turbine generator, recuperator, humidification tower, water recovery system, WAC system, economizer, and other components is planned to be constructed, with testing slated to begin in October 2006 to validate the performance and reliability of the AHAT system. The expected performance is as follows: thermal efficiency of 43% (LHV), output of 3.6MW, and NOx emissions of less than 10ppm at 15% O2. This paper introduces the elemental technologies and the pilot plant to be built for the AHAT system.


Author(s):  
Hidetoshi Kuroki ◽  
Takanori Shibata ◽  
Tomomi Koganezawa ◽  
Nobuaki Kizuka ◽  
Shigeo Hatamiya ◽  
...  

The Advanced Humid Air Turbine (AHAT) system improves the thermal efficiency of gas turbine power generation by using a humidifier, a Water Atomization Cooling (WAC) system, and a heat recovery system, thus eliminating the need for an extremely high firing temperature and pressure ratio. The following elemental technologies have been developed to realize the AHAT system: (1) a broad working range and high-efficiency compressor that utilizes the WAC system to reduce compression work, (2) turbine blade cooling techniques that can withstand high heat flux due to high-humidity working gas, and (3) a combustor that achieves both low NOx emissions and a stable flame condition with high-humidity air. A gas turbine equipped with a two-stage radial compressor (with a pressure ratio of 8), two-stage axial turbine, and a reverse-flow type of single-can combustor has been developed based on the elemental technologies described above. A pilot plant that consists of a gas turbine generator, recuperator, humidification tower, water recovery system, WAC system, economizer, and other components is planned to be constructed, with testing slated to begin in October 2006 to validate the performance and reliability of the AHAT system. The expected performance is as follows: thermal efficiency of 43% (LHV), output of 3.6 MW, and NOx emissions of less than 10 ppm at 15% O2. This paper introduces the elemental technologies and the pilot plant to be built for the AHAT system.


2017 ◽  
Vol 121 (1245) ◽  
pp. 1605-1626 ◽  
Author(s):  
F. Yin ◽  
A. Gangoli Rao

ABSTRACTThe historical trends of reduction in fuel consumption and emissions from aero engines have been mainly due to the improvement in the thermal efficiency, propulsive efficiency and combustion technology. The engine Overall Pressure Ratio (OPR) and Turbine Inlet Temperature (TIT) are being increased in the pursuit of increasing the engine thermal efficiency. However, this has an adverse effect on engine NOx emission. The current paper investigates a possible solution to overcome this problem for future generation Very High Bypass Ratio (VHBR)/Ultra High Bypass Ratio (UHBR) aero-engines in the form of an Inter-stage Turbine Burner (ITB). The ITB concept is investigated on a next generation baseline VHBR aero engine to evaluate its effect on the engine performance and emission characteristics for different ITB energy fractions. It is found that the ITB can reduce the bleed air required for cooling the HPT substantially (around 80%) and also reduce the NOx emission significantly (>30%) without penalising the engine specific fuel consumption.


Author(s):  
Y. Haseli

Optimum pressure ratios of a regenerative gas turbine (RGT) power plant with and without a solid oxide fuel cell are investigated. It is shown that assuming a constant specific heat ratio throughout the RGT plant, explicit expressions can be derived for the optimum pressure ratios leading to maximum thermal efficiency and maximum net work output. It would be analytically complicated to apply the same method for the hybrid system due to the dependence of electrochemical parameters such as cell voltage on thermodynamic parameters like pressure and temperature. So, the thermodynamic optimization of this system is numerically studied using models of RGT plant and solid oxide fuel cell. Irreversibilities in terms of component efficiencies and total pressure drop within each configuration are taken into account. The main results for the RGT plant include maximization of the work output at the expenses of 2–4% lower thermal efficiency and higher capital costs of turbo-compressor compared to a design based on maximum thermal efficiency. On the other hand, the hybrid system is studied for a turbine inlet temperature (TIT) of 1 250–1 450 K and 10–20% total pressure drop in the system. The maximum thermal efficiency is found to be at a pressure ratio of 3–4, which is consistent with past studies. A higher TIT leads to a higher pressure ratio; however, no significant effect of pressure drop on the optimum pressure ratio is observed. The maximum work output of the hybrid system may take place at a pressure ratio at which the compressor outlet temperature is equal to the turbine downstream temperature. The work output increases with increasing the pressure ratio up to a point after which it starts to vary slightly. The pressure ratio at this point is suggested to be the optimal because the work output is very close to its maximum and the thermal efficiency is as high as a littler less than 60%.


1996 ◽  
Vol 118 (3) ◽  
pp. 654-660 ◽  
Author(s):  
D. S. Beck

An algorithm for the optimization of regenerated gas turbines is given. For sets of inputs that are typical for automotive applications, the optimum cycle pressure ratio and a set of optimized regenerator parameters that maximize thermal efficiency are given. A second algorithm, an algorithm for sizing regenerators based on outputs of the optimization algorithm, is given. With this sizing algorithm, unique regenerator designs can be determined for many applications based on the presented optimization data. Results of example sizings are given. The data indicate that one core (instead of two cores) should be used to maximize thermal efficiency. The data also indicate that thermal efficiencies of over 50 percent should be achievable for automotive applications if ceramic turbines are used.


Author(s):  
Robert Tacina ◽  
Changlie Wey ◽  
Peter Laing ◽  
Adel Mansour

Results of a low-NOx combustor test with a 15° sector are presented. A multipoint, lean-direct injection concept is used. The configuration tested has 36 fuel injectors and fuel-air mixers in place of a dual annular arrangement of two conventional fuel injectors. An integrated-module approach is used for the construction where chemically etched laminates that are diffusion bonded, combine the fuel injectors, air swirlers and fuel manifold into a single element. Test conditions include inlet temperatures up to 866K, and inlet pressures up to 4825 kPa. The fuel used was Jet A. A correlation is developed relating the NOx emissions to the inlet temperature, inlet pressure, and fuel-air ratio. Using a hypothetical 55:1 pressure-ratio engine, cycle NOx emissions are estimated to be less than 40% of the 1996 ICAO standard.


Sign in / Sign up

Export Citation Format

Share Document