Numerical Investigations on the Aerothermal Performance and Film Cooling Effectiveness of Turbine Vane Endwall at Inlet Swirl Conditions

2021 ◽  
Author(s):  
Zhiyu Li ◽  
Kaiyuan Zhang ◽  
Zhigang Li ◽  
Jun Li

Abstract Lean burn premix technology of gas turbines results in that the turbine combustor outlet has strong swirl flow characteristics which directly influences the inlet flow condition of the first turbine vane downstream from combustor and raise the thermal load of endwall. The aerothermal performance and film cooling effectiveness of first turbine vane endwall at different inlet swirl conditions is numerically investigated in this paper. The flow pattern, Nusselt number distribution and film cooling effectiveness of turbine vane endwall at the uniform and three kinds of swirl numbers (0.6, 0.8, 1.0) inflow conditions with clockwise and anticlockwise swirl orientations are analyzed using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) and SST k-ω turbulence model solutions. The obtained results show that the flow field is apparently influenced by inlet swirl conditions. The separation in passage is clearly suppressed at clockwise swirl inflow conditions but anticlockwise make the flow pattern more complex. Inlet swirl can increase the overall Nu on the endwall. Especially in the area upstream of leading edge and area between the first and second row of film holes whose Nu are increased by 4 and 1.5 times compared with uniform inflow, respectively. Not only swirl number but also orientation can affect the film cooling effectiveness distribution of the vane endwall. The better film cooling effectiveness distribution and higher film cooling effectiveness downstream of each film hole row can be achieved at the clockwise swirl inflow conditions by weakening the accumulation of coolant near the suction side of the turbine vane endwall. Compared with uniform inflow, average film cooling effectiveness of endwall between the second row and third row is increased from 0.21 to 0.27 at clockwise SN = 1.0 for the maximum increase. The detailed flow field and aerothermal performance of the turbine vane endwall at different swirl inflow conditions is also discussed and illustrated.

Author(s):  
M. Ghorab ◽  
S. I. Kim ◽  
I. Hassan

Cooling techniques play a key role in improving efficiency and power output of modern gas turbines. The conjugate technique of film and impingement cooling schemes is considered in this study. The Multi-Stage Cooling Scheme (MSCS) involves coolant passing from inside to outside turbine blade through two stages. The first stage; the coolant passes through first hole to internal gap where the impinging jet cools the external layer of the blade. Finally, the coolant passes through the internal gap to the second hole which has specific designed geometry for external film cooling. The effect of design parameters, such as, offset distance between two-stage holes, gap height, and inclination angle of the first hole, on upstream conjugate heat transfer rate and downstream film cooling effectiveness performance are investigated computationally. An Inconel 617 alloy with variable properties is selected for the solid material. The conjugate heat transfer and film cooling characteristics of MSCS are analyzed across blowing ratios of Br = 1 and 2 for density ratio, 2. This study presents upstream wall temperature distributions due to conjugate heat transfer for different gap design parameters. The maximum film cooling effectiveness with upstream conjugate heat transfer is less than adiabatic film cooling effectiveness by 24–34%. However, the full coverage of cooling effectiveness in spanwise direction can be obtained using internal cooling with conjugate heat transfer, whereas adiabatic film cooling effectiveness has narrow distribution.


Author(s):  
Qingzong Xu ◽  
Qiang Du ◽  
Pei Wang ◽  
Jun Liu ◽  
Guang Liu

High inlet temperature of turbine vane increases the demand of high film cooling effectiveness. Vane endwall region was extensively cooled due to the high and flat exit temperature distribution of combustor. Leakage flow from the combustor-turbine gap was used to cool the endwall region except for preventing hot gas ingestion. Numerical predictions were conducted to investigate the flow structure and adiabatic film cooling effectiveness of endwall region in a linear cascade with vane-endwall junction fillet. The simulations were completed by solving the three-dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with shear stress transport(SST) k-ω turbulence model, meanwhile, the computational method and turbulence model were validated by comparing computational result with the experiment. Three types of linear fillet with the length-to-height ratio of 0.5, 1 and 2, named fillet A, fillet B and fillet C respectively, were studied. In addition, circular fillet with radius of 2mm was compared with linear fillet B. The interrupted slot, produced by changing the way of junction of combustor and turbine vane endwall, is introduced at X/Cax = −0.2 upstream of the vane leading edge. Results showed that fillet can significantly affect the cooling performance on the endwall due to suppressing the strength of the secondary flow. Fillet C presented the best cooling performance comparing to fillet A and fillet B because a portion of the coolant which climbs to the fillet was barely affected by secondary flow. Results also showed the effect of fillet on the total pressure loss. The result indicated that only fillet A slightly decreases endwall loss.


Author(s):  
Sadam Hussain ◽  
Xin Yan

Abstract Film cooling is one of the most critical technologies in modern gas turbine engine to protect the high temperature components from erosion. It allows gas turbines to operate above the thermal limits of blade materials by providing the protective cooling film layer on outer surfaces of blade against hot gases. To get a higher film cooling effect on plain surface, current study proposes a novel strategy with the implementation of hole-pair into ramp. To gain the film cooling effectiveness on the plain surface, RANS equations combined with k-ω turbulence model were solved with the commercial CFD solver ANSYS CFX11.0. In the numerical simulations, the density ratio (DR) is fixed at 1.6, and the film cooling effect on plain surface with different configurations (i.e. with only cooling hole, with only ramp, and with hole-pair in ramp) were numerically investigated at three blowing ratios M = 0.25, 0.5, and 0.75. The results show that the configuration with Hole-Pair in Ramp (HPR) upstream the cooling hole has a positive effect on film cooling enhancement on plain surface, especially along the spanwise direction. Compared with the baseline configuration, i.e. plain surface with cylindrical hole, the laterally-averaged film cooling effectiveness on plain surface with HPR is increased by 18%, while the laterally-averaged film cooling effectiveness on plain surface with only ramp is increased by 8% at M = 0.5. As the blowing ratio M increases from 0.25 to 0.75, the laterally-averaged film cooling effectiveness on plain surface with HPR is kept on increasing. At higher blowing ratio M = 0.75, film cooling effectiveness on plain surface with HPR is about 19% higher than the configuration with only ramp.


Author(s):  
Mael Harnieh ◽  
Nicolas Odier ◽  
Jérôme Dombard ◽  
Florent Duchaine ◽  
Laurent Gicquel

Abstract The use of numerical simulations to design and optimize turbine vane cooling requires precise prediction of the fluid mechanics and film cooling effectiveness. This results in the need to numerically identify and assess the various origins of the losses taking place in such systems and if possible in engine representative conditions. Large-Eddy Simulation (LES) has shown recently its ability to predict turbomachinery flows in well mastered academic cases such as compressor or turbine cascades. When it comes to industrial representative configurations, the geometrical complexities, high Reynolds and Mach numbers as well as boundary condition setup lead to an important increase of CPU cost of the simulations. To evaluate the capacity of LES to predict film cooling effectiveness as well as to investigate the loss generation mechanisms in a turbine vane in engine representative conditions, a wall-modeled LES of the FACTOR film-cooled nozzle is performed. After the comparison of integrated values to validate the operating point of the vanes, the mean flow structure is investigated. In the coolant film, a strong turbulent mixing process between coolant and hot flows is observed. As a result, the spatial distribution of time-averaged vane surface temperature is highly heterogeneous. Comparisons with the experiment show that the LES prediction fairly reproduces the spatial distribution of the adiabatic film effectiveness. The loss generation in the configuration is then investigated. To do so, two methodologies, i.e, performing balance of total pressure in the vanes wakes as mainly used in the literature and Second Law Analysis (SLA) are evaluated. Balance of total pressure without the contribution of thermal effects only highlights the losses generated by the wakes and secondary flows. To overcome this limitation, SLA is adopted by investigating loss maps. Thanks to this approach, mixing losses are shown to dominate in the coolant film while aerodynamic losses dominate in the coolant pipe region.


Author(s):  
Shang-Feng Yang ◽  
Je-Chin Han ◽  
Alexander MirzaMoghadam ◽  
Ardeshir Riahi

This paper studies the effect of transonic flow velocity on local film cooling effectiveness distribution of turbine vane suction side, experimentally. A conduction-free Pressure Sensitive Paint (PSP) method is used to determine the local film cooling effectiveness. Tests were performed in a five-vane annular cascade at Texas A&M Turbomachinery laboratory blow-down flow loop facility. The exit Mach numbers are controlled to be 0.7, 0.9, and 1.1, from subsonic to transonic flow conditions. Three foreign gases N2, CO2 and Argon/SF6 mixture are selected to study the effects of three coolant-to-mainstream density ratios, 1.0, 1.5, and 2.0 on film cooling. Four averaged coolant blowing ratios in the range, 0.7, 1.0, 1.3 and 1.6 are investigated. The test vane features 3 rows of radial-angle cylindrical holes around the leading edge, and 2 rows of compound-angle shaped holes on the suction side. Results suggest that the PSP technique is capable of producing clear and detailed film cooling effectiveness contours at transonic condition. The effects of coolant to mainstream blowing ratio, density ratio, and exit Mach number on the vane suction-surface film cooling distribution are obtained, and the consequence results are presented and explained in this investigation.


Author(s):  
Gunther Müller ◽  
Christian Landfester ◽  
Martin Böhle ◽  
Robert Krewinkel

Abstract This study is concerned with the film cooling effectiveness of the flow issuing from the gap between the NGV and the transition duct on the NGV endwall, i.e. the purge slot. Different slot widths, positions and injection angles were examined in order to represent changes due to thermal expansion as well as design modifications. Apart from these geometric variations, different blowing ratios (BR) and density ratios (DR) were realized to investigate the effects of the interaction between secondary flow and film cooling effectiveness. The experimental tests were performed in a linear scale-1 cascade equipped with four highly loaded turbine vanes at the Institute of Fluid Mechanics and Fluid Machinery of the University of Kaiserslautern. The mainstream flow parameters were, with a Reynolds number of 300,000 and a Mach number (outlet) of 0.6, set to meet real engine conditions. By using various flow conditioners, periodic flow was obtained in the region of interest (ROI). The adiabatic film cooling effectiveness was determined by using the Pressure Sensitive Paint (PSP) technique. In this context, nitrogen and carbon dioxide were used as tracer gases realizing two different density ratios DR = 1.0 and 1.6. The investigation was conducted for a broad range of blowing ratios with 0.25 ≤ BR ≤ 1.50. In combination with 10 geometry variations and the aforementioned blowing and density ratio variations 100 single operating points were investigated. For a better understanding of the coolant distribution, the secondary flows on the endwall were visualized by oil dye. The measurement results will be discussed based on the areal distribution of film cooling effectiveness, its lateral spanwise as well as its area average. The results will provide a better insight into various parametric effects of gap variations on turbine vane endwall film cooling performance — notably under realistic engine conditions.


Author(s):  
Yang Zhang ◽  
Yifei Li ◽  
Xiutao Bian ◽  
Xin Yuan

The lean combustion chamber of low NOx emission engines has a short distance between combustion outlet and nozzle guide vanes (NGVs), with strong swirlers located upstream of the turbine inlet to from steady circulation in the combustion region. Although the lean combustion design benefits emission control, it complicates the turbine’s aerodynamics and heat transfer. The strong swirling flow will influence the near-wall flow field where film cooling acts. This research investigates the influence of inlet swirl on the film cooling of cascades. The test cascades are a 1.95 scale model based on the GE-E3 profile, with an inlet Mach number of 0.1 and Reynolds number of 1.48 × 105. Film cooling effectiveness is measured with pressure-sensitive paint (PSP) technology, with nitrogen simulating coolant at a density ratio of near to 1.0. Two neighboring passages are investigated simultaneously, so that pressure and suction side the film cooling effectiveness can be compared. The inlet swirl is produced by a swirler placed upstream, near the inlet, with five positions along the pitchwise direction. These are as follows: blade 1 aligned, passage 1–2 aligned, blade 2 aligned, passage 2–3 aligned and blade 3 aligned. According to the experimental results, the near-hub region is strongly influenced by inlet swirl, where the averaged film cooling effectiveness can differ by up to 12% between the neighboring blades. At the spanwise location Z/Span = 0.7, when the inlet swirl is moved from blade 1 aligned (position 5) to blade 2 aligned (position 3), the film cooling effectiveness in a small area near the endwall can change by up to 100%.


Author(s):  
Karsten Kusterer ◽  
Nurettin Tekin ◽  
Frederieke Reiners ◽  
Dieter Bohn ◽  
Takao Sugimoto ◽  
...  

In modern gas turbines, the film cooling technology is essential for the protection of the hot parts, in particular of the first stage vanes and blades of the turbine, against the hot gases from the combustion process in order to reach an acceptable life span of the components. As the cooling air is usually extracted from the compressor, the reduction of the cooling effort would directly result to an increased thermal efficiency of the gas turbine. Understanding of the fundamental physics of film cooling is necessary for the improvement of the state-of-the-art. Thus, huge research efforts by industry as well as research organizations have been undertaken to establish high efficient film cooling technologies. It is a today common knowledge that film cooling effectiveness degradation is caused by secondary flows inside the cooling jets, i.e. the Counter-Rotating Vortices (CRV) or sometimes also mentioned as kidney-vortices, which induce a lift-off of the jet. Further understanding of the secondary flow development inside the jet and how this could be influenced, has led to hole configurations, which can induce Anti-Counter-Rotating Vortices (ACRV) in the cooling jets. As a result, the cooling air remains close to the wall and is additionally distributed flatly along the surface. Beside different other technologies, the NEKOMIMI cooling technology is a promising approach to establish the desired ACRV. It consists of a combination of two holes in just one configuration so that the air is distributed mainly on two cooling air streaks following the special shape of the generated geometry. The original configuration was found to be difficult for manufacturing even by advanced manufacturing processes. Thus, the improvement of this configuration has been reached by a set of geometry parameters, which lead to configurations much easier to be manufactured but preserving the principle of the NEKOMIMI technology. Within a numerical parametric study several advanced configurations have been obtained and investigated under ambient air flow conditions similar to conditions for a wind tunnel test rig. By systematic variation of the parameters a further optimization with respect to highest film cooling effectiveness has been performed. A set of most promising configurations has been also investigated experimentally in the test rig. The best configuration outperforms the basic configuration by 17% regarding the overall averaged adiabatic film cooling effectiveness under the experimental conditions.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Ruwan P. Somawardhana ◽  
David G. Bogard

Recent studies have shown that film cooling with holes embedded in a shallow trench significantly improves cooling performance. In this study, the performance of shallow trench configurations was investigated for simulated deteriorated surface conditions, i.e., increased surface roughness and near-hole obstructions. Experiments were conducted on the suction side of a scaled-up simulated turbine vane. Results from the study indicated that as much as 50% degradation occurred with upstream obstructions, but downstream obstructions actually enhanced film cooling effectiveness. However, the transverse trench configuration performed significantly better than the traditional cylindrical holes, both with and without obstructions and almost eliminated the effects of both surface roughness and obstructions.


Sign in / Sign up

Export Citation Format

Share Document