Effect of a Ceramic Matrix Composite Surface on Film Cooling

2021 ◽  
Author(s):  
Peter H. Wilkins ◽  
Stephen P. Lynch ◽  
Karen A. Thole ◽  
San Quach ◽  
Tyler Vincent ◽  
...  

Abstract Ceramic matrix composite (CMC) parts create the opportunity for increased turbine entry temperatures within gas turbines. To achieve the highest temperatures possible, film cooling will play an important role in allowing turbine entry temperatures to exceed acceptable surface temperatures for CMC components, just as it does for the current generation of gas turbine components. Film cooling over a CMC surface introduces new challenges including roughness features downstream of the cooling holes and changes to the hole exit due to uneven surface topography. To better understand these impacts, this study presents flowfield and adiabatic effectiveness CFD for a 7-7-7 shaped film cooling hole at two CMC weave orientations. The CMC surface selected is a 5 Harness Satin weave pattern that is examined at two different orientations. To understand the ability of steady RANS to predict flow and convective heat transfer over a CMC surface, the weave surface is initially simulated without film and compared to previous experimental results. The simulation of the weave orientation of 0°, with fewer features projecting into the flow, matches fairly well to the experiment, and demonstrates a minimal impact on film cooling leading to only slightly lower adiabatic effectiveness compared to a smooth surface. However, the simulation of the 90° orientation with a large number of protruding features does not match the experimentally observed surface heat transfer. The additional protruding surface produces degraded film cooling performance at low blowing ratios but is less sensitive to blowing ratio, leading to improved relative performance at higher blowing ratios, particularly in regions far downstream of the hole.

Author(s):  
Karthik Krishna ◽  
Mark Ricklick

Ceramic Matrix Composite is a woven material characterized by a significant level of surface waviness of 35–60μm and surface roughness of 5–6μm. To be implemented in a future gas turbine engine they will be cooled traditionally to increase power and efficiency. To analyze the CMC surface effects on heat transfer rate, an impinging circular jet on a simulated CMC surface is studied experimentally and the CMC surface is represented by a high resolution CNC machined surface. The test parameters are jet to plate distance of 7 jet diameters, oblique impingement angles of 45° and 90° and Reynolds numbers of 11,000 to 35,000. The test surface is broken down into constant temperature segments, and individual segment Nusselt number is determined and plotted for the various impingement cases studied. Area-Averaged results show negligible changes in average Nusselt number as compared to the hydrodynamically smooth surface. The impact of the CMC surface feature is negligible compared to the uncertainty in heat transfer coefficient, and therefore traditional design tools can be utilized.


Author(s):  
Peter H. Wilkins ◽  
Stephen P. Lynch ◽  
Karen A. Thole ◽  
San Quach ◽  
Tyler Vincent

Abstract Ceramic matrix composites (CMCs) are quickly becoming more prevalent in the design of gas turbines due to their advantageous weight and thermal properties. While there are many advantages, the CMC surface morphology differs from that of conventional cast airfoil components. Despite a great deal of research focused on the material properties of CMCs, little public work has been done to investigate the impact that the CMC surface morphology has on the boundary layer development and resulting heat transfer. In this study, a scaled-up CMC weave pattern was developed and tested in a low speed wind tunnel to evaluate both heat transfer and boundary layer characteristics. Results from these experiments indicate that the CMC weave pattern results in augmented heat transfer and flow field properties that significantly vary locally when compared to a smooth surface.


2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Peter H. Wilkins ◽  
Stephen P. Lynch ◽  
Karen A. Thole ◽  
San Quach ◽  
Tyler Vincent

Abstract Ceramic matrix composites (CMCs) are quickly becoming more prevalent in the design of gas turbines due to their advantageous weight and thermal properties. While there are many advantages, the CMC surface morphology differs from that of conventional cast airfoil components. Despite a great deal of research focused on the material properties of CMCs, little public work has been done to investigate the impact that the CMC surface morphology has on the boundary layer development and resulting heat transfer. In this study, a scaled-up CMC weave pattern was developed and tested in a low-speed wind tunnel to evaluate both heat transfer and boundary layer characteristics. Results from these experiments indicate that the CMC weave pattern results in augmented heat transfer and flow field properties that significantly vary locally when compared with a smooth surface.


Author(s):  
Joshua B. Anderson ◽  
John W. McClintic ◽  
David G. Bogard ◽  
Thomas E. Dyson ◽  
Zachary Webster

The use of compound-angled shaped film cooling holes in gas turbines provides a method for cooling regions of extreme curvature on turbine blades or vanes. These configurations have received surprisingly little attention in the film cooling literature. In this study, a row of laid-back fanshaped holes based on an open-literature design, were oriented at a 45-degree compound angle to the approaching freestream flow. In this study, the influence of the approach flow boundary layer thickness and character were experimentally investigated. A trip wire and turbulence generator were used to vary the boundary layer thickness and freestream conditions from a thin laminar boundary layer flow to a fully turbulent boundary layer and freestream at the hole breakout location. Steady-state adiabatic effectiveness and heat transfer coefficient augmentation were measured using high-resolution IR thermography, which allowed the use of an elevated density ratio of DR = 1.20. The results show adiabatic effectiveness was generally lower than for axially-oriented holes of the same geometry, and that boundary layer thickness was an important parameter in predicting effectiveness of the holes. Heat transfer coefficient augmentation was highly dependent on the freestream turbulence levels as well as boundary layer thickness, and significant spatial variations were observed.


Author(s):  
T. I.-P. Shih ◽  
S. Na ◽  
M. Chyu

Flow aligned blockers are proposed to minimize the entrainment of hot gases underneath film-cooling jets by the counter-rotating vortices within the jets. Computations, based on the ensemble-averaged Navier-Stokes equations closed by the realizable k-ε turbulence model, were used to assess the usefulness of rectangular prisms as blockers in increasing film-cooling adiabatic effectiveness without unduly increasing surface heat transfer and pressure loss. The Taguchi’s design of experiment method was used to investigate the effects of the height of the blocker (0.2D, 0.4D, 0.8D), the thickness of the blocker (D/20, D/10, D/5), and the spacing between the pair of blockers (0.8D, 1.0D, 1.2D), where D is the diameter of the film-cooling hole. The effects of blowing ratio (0.37, 0.5, 0.65) were also studied. Results obtained show that blockers can greatly increase film-cooling effectiveness. By using rectangular prisms as blockers, the laterally averaged adiabatic effectiveness at 15D downstream of the film-cooling hole is as high as that at 1D downstream. The surface heat transfer was found to increase slightly near the leading edge of the prisms, but reduced elsewhere from reduced temperature gradients that resulted from reduced hot gas entrainment. However, pressure loss was found to increase somewhat because of the flat rectangular leading edge, which can be made more streamlined.


2020 ◽  
pp. 1-30
Author(s):  
Shane Haydt ◽  
Stephen Lynch

Abstract Film cooling holes with shaped diffusers are used to efficiently deliver coolant to the surface of a gas turbine part to keep metal temperatures low. Reducing the heat flux into a component, relative to a case with no coolant injection, is the ultimate goal of film cooling. This reduction in heat flux is primarily achieved via a lower driving temperature at the wall for convection, represented by the adiabatic effectiveness. Another important consideration, however, is how the disturbance to the flowfield and thermal field caused by the injection of coolant augments the heat transfer coefficient. The present study examines the spatially-resolved heat transfer coefficient augmentation, measured using a constant heat flux foil and IR thermography, for a shaped film cooling hole at a range of compound angles. Results show that the heat transfer coefficient increases with compound angle and with blowing ratio. Due to the unique asymmetric flowfield of a compound angle hole, a significant amount of augmentation occurs to the side of the film cooling jet, where very little coolant is present. This causes local regions of increased heat flux, which is counter to the goal of film cooling. Heat transfer results are compared with adiabatic effectiveness and flowfield measurements from a previous study.


2015 ◽  
Vol 137 (11) ◽  
Author(s):  
Amy Mensch ◽  
Karen Thole

Replacing natural gas fuels with coal-derived syngas in industrial gas turbines can lead to molten particle deposition on the turbine components. The deposition of the particles, which originate from impurities in the syngas fuels, can increase surface roughness and obstruct film cooling holes. These deposition effects increase heat transfer to the components and degrade the performance of cooling mechanisms, which are critical for maintaining component life. The current experimental study dynamically simulated molten particle deposition on a conducting blade endwall with the injection of molten wax. The key nondimensional parameters for modeling of conjugate heat transfer and deposition were replicated in the experiment. The endwall was cooled with internal impingement jet cooling and film cooling. Increasing blowing ratio mitigated some deposition at the film cooling hole exits and in areas of coolest endwall temperatures. After deposition, the external surface temperatures and internal endwall temperatures were measured and found to be warmer than the endwall temperatures measured before deposition. Although the deposition helps insulate the endwall from the mainstream, the roughness effects of the deposition counteract the insulating effect by decreasing the benefit of film cooling and by increasing external heat transfer coefficients.


Sign in / Sign up

Export Citation Format

Share Document