Preventing Hot Gas Ingestion by Film-Cooling Jets via Flow-Aligned Blockers

Author(s):  
T. I.-P. Shih ◽  
S. Na ◽  
M. Chyu

Flow aligned blockers are proposed to minimize the entrainment of hot gases underneath film-cooling jets by the counter-rotating vortices within the jets. Computations, based on the ensemble-averaged Navier-Stokes equations closed by the realizable k-ε turbulence model, were used to assess the usefulness of rectangular prisms as blockers in increasing film-cooling adiabatic effectiveness without unduly increasing surface heat transfer and pressure loss. The Taguchi’s design of experiment method was used to investigate the effects of the height of the blocker (0.2D, 0.4D, 0.8D), the thickness of the blocker (D/20, D/10, D/5), and the spacing between the pair of blockers (0.8D, 1.0D, 1.2D), where D is the diameter of the film-cooling hole. The effects of blowing ratio (0.37, 0.5, 0.65) were also studied. Results obtained show that blockers can greatly increase film-cooling effectiveness. By using rectangular prisms as blockers, the laterally averaged adiabatic effectiveness at 15D downstream of the film-cooling hole is as high as that at 1D downstream. The surface heat transfer was found to increase slightly near the leading edge of the prisms, but reduced elsewhere from reduced temperature gradients that resulted from reduced hot gas entrainment. However, pressure loss was found to increase somewhat because of the flat rectangular leading edge, which can be made more streamlined.

Author(s):  
S. Na ◽  
T. I.-P. Shih

A new design concept is presented to increase the adiabatic effectiveness of film cooling jets without unduly increasing surface heat transfer and pressure loss. Instead of shaping the film-cooling hole at its downstream end as is done for shaped holes, this study proposes a geometry modification upstream of the film-cooling hole to modify the approaching boundary-layer flow and its interaction with the film-cooling jet. Computations, based on the ensemble-averaged Navier-Stokes equations closed by the realizable k-ε turbulence model, were used to examine the usefulness of making the surface just upstream of the film-cooling hole into a ramp with backward-facing step. The effects of the following parameters were investigated: angle of the ramp (8.5°, 10°, 14°), distance between the backward-facing step of the ramp and the film-cooling hole (0.5D, D), and blowing ratio (0.36, 0.49, 0.56, 0.98). Results obtained show that an upstream ramp with a backward-facing step can greatly increase film-cooling adiabatic effectiveness. The laterally averaged adiabatic effectiveness with ramp can be two or more times higher than without the ramp. Also, the ramp increases the surface area that each film-cooling jet protects. However, using the ramp does increase drag. The increase in surface heat transfer was found to be minimal.


Author(s):  
T. I.-P. Shih ◽  
Y.-L. Lin

Computations, based on the ensemble-averaged compressible Navier-Stokes equations closed by the shear-stress transport (SST) turbulence model, were performed to investigate the effects of leading-edge airfoil fillet and inlet-swirl angle on the flow and heat transfer in a turbine-nozzle guide vane. Three fillet configurations were simulated: no fillet (baseline), a fillet whose thickness fades on the airfoil, and a fillet whose thickness fades on the endwall. For both fillets, the maximum height above the endwall is positioned along the stagnation zone/line on the airfoil under the condition of no swirl. For each configuration, three inlet swirls were investigated: no swirl (baseline) and two linearly varying swirl angle from one endwall to the other (+30° to −30° and −30° to +30°). Results obtained show that both leading-edge fillet and inlet swirl can reduce aerodynamic loss and surface heat transfer. For the conditions of this study, the difference in stagnation pressure from the nozzle’s inlet to its exit were reduced by more than 40% with swirl or with fillet without swirl. Surface heat transfer was reduced by more than 10% on the airfoil and by more than 30% on the endwalls. When there is swirl, leading-edge fillets became less effective in reducing aerodynamic loss and surface heat transfer, because the fillets were not optimized for swirl angles imposed. Since the intensity and size of the cross flow were found to increase instead of decrease by inlet swirl and by the type of fillet geometries investigated, the results of this study indicate that the mechanisms responsible for aerodynamic loss and surface heat transfer are more complex than just the intensity and the magnitude of the secondary flows. This study shows their location and interaction with the main flow to be more important, and this could be exploited for positive results.


Author(s):  
Jason E. Albert ◽  
David G. Bogard ◽  
Frank Cunha

Laboratory studies of film cooling performance for turbine section airfoils typically quantify adiabatic effectiveness and occasionally the heat transfer coefficient for the film cooling configuration. In this study the normalized airfoil metal surface temperatures are obtained directly by using a test model that has a material conductivity scaled to the external and internal heat transfer coefficients so that the Biot number for the model is similar to that for the actual airfoil. These results provide an experimental test case of the conjugate heat transfer involved in turbine airfoil cooling. In this study, conventional adiabatic effectiveness and the overall cooling effectiveness (normalized surface temperature for the matched Biot model) were measured for a generic blade leading edge using three rows of shaped holes. Distinct differences were found between the adiabatic effectiveness and overall cooling effectiveness. Also included is a practical application of this experimental method for which the degradation of overall cooling effectiveness due to a plugged cooling hole is examined.


2003 ◽  
Vol 125 (1) ◽  
pp. 48-56 ◽  
Author(s):  
T. I-P. Shih ◽  
Y.-L. Lin

Computations, based on the ensemble-averaged compressible Navier-Stokes equations closed by the shear-stress transport (SST) turbulence model, were performed to investigate the effects of leading-edge airfoil fillet and inlet-swirl angle on the flow and heat transfer in a turbine-nozzle guide vane. Three fillet configurations were simulated: no fillet (baseline), a fillet whose thickness fades on the airfoil, and a fillet whose thickness fades on the endwall. For both fillets, the maximum height above the endwall is positioned along the stagnation zone/line on the airfoil under the condition of no swirl. For each configuration, three inlet swirls were investigated: no swirl (baseline) and two linearly varying swirl angle from one endwall to the other (+30 to −30 deg and −30 to +30 deg). Results obtained show that both leading-edge fillet and inlet swirl can reduce aerodynamic loss and surface heat transfer. For the conditions of this study, the difference in stagnation pressure from the nozzle’s inlet to its exit were reduced by more than 40% with swirl or with fillet without swirl. Surface heat transfer was reduced by more than 10% on the airfoil and by more than 30% on the endwalls. When there is swirl, leading-edge fillets became less effective in reducing aerodynamic loss and surface heat transfer, because the fillets were not optimized for swirl angles imposed. Since the intensity and size of the cross flow were found to increase instead of decrease by inlet swirl and by the type of fillet geometries investigated, the results of this study indicate that the mechanisms responsible for aerodynamic loss and surface heat transfer are more complex than just the intensity and the magnitude of the secondary flows. This study shows their location and interaction with the main flow to be more important, and this could be exploited for positive results.


2021 ◽  
Author(s):  
Peter H. Wilkins ◽  
Stephen P. Lynch ◽  
Karen A. Thole ◽  
San Quach ◽  
Tyler Vincent ◽  
...  

Abstract Ceramic matrix composite (CMC) parts create the opportunity for increased turbine entry temperatures within gas turbines. To achieve the highest temperatures possible, film cooling will play an important role in allowing turbine entry temperatures to exceed acceptable surface temperatures for CMC components, just as it does for the current generation of gas turbine components. Film cooling over a CMC surface introduces new challenges including roughness features downstream of the cooling holes and changes to the hole exit due to uneven surface topography. To better understand these impacts, this study presents flowfield and adiabatic effectiveness CFD for a 7-7-7 shaped film cooling hole at two CMC weave orientations. The CMC surface selected is a 5 Harness Satin weave pattern that is examined at two different orientations. To understand the ability of steady RANS to predict flow and convective heat transfer over a CMC surface, the weave surface is initially simulated without film and compared to previous experimental results. The simulation of the weave orientation of 0°, with fewer features projecting into the flow, matches fairly well to the experiment, and demonstrates a minimal impact on film cooling leading to only slightly lower adiabatic effectiveness compared to a smooth surface. However, the simulation of the 90° orientation with a large number of protruding features does not match the experimentally observed surface heat transfer. The additional protruding surface produces degraded film cooling performance at low blowing ratios but is less sensitive to blowing ratio, leading to improved relative performance at higher blowing ratios, particularly in regions far downstream of the hole.


Author(s):  
Wolfgang Ganzert ◽  
Leonhard Fottner

As a part of a more complex research program systematic isothermal investigations on the aerodynamics and heat transfer of a large scale turbine cascade with suction side film cooling were carried out. The film cooling through a row of holes at forty percent chord length on the suction side was supplied by a large plenum chamber. Two injection geometries were hitherto tested and evaluated: cylindrical holes with thirty respectively fifty degrees axial inclination angle and no lateral inclination. Typical engine conditions for the Mach and Reynolds number as well as the inlet turbulence level were maintained. The aerodynamic studies are based on steady state pressure measurements. The static profile pressure distribution together with oil-and-dye flow visualisation gives information on the surface flow conditions and boundary layer development especially in the near hole region. The measured data also comprise local and integral total pressure loss coefficients obtained by pressure probe traversing at mid span downstream of the cascade. The heat transfer examination set-up is based on the steady state liquid crystal technique using a compound of a thermochromic sheet combined with an electrical surface heating layer attached on an adiabatic blade corpus. Two dimensional pseudo colour plots are used for the documentation of the local surface heat transfer coefficient distribution and hot spot estimation. Laterally averaged and statistically analysed data of the surface heat transfer is applied in overall heat transfer examinations. All this data is used for a joint aerodynamic flow and surface heat transfer optimisation of a blowing configuration in suction side film cooled turbine cascade. The most important conclusions can be summarised as follows: Aiming at an optimised design of cylindrical film cooling configurations the axial inclination of the holes should be kept low thus diminishing the suction peak value at the cooling position in the profile pressure distribution and decreasing the mainstream deceleration area upstream of the jets. This also leads to reduced total pressure losses. Through the high influence of the blowing on the aerodynamics the flow in the near hole mixing region is highly three-dimensional. This shows significant effects in the two-dimensional surface distribution and the laterally averaged heat transfer coefficient. Oil-and-dye pictures confirm the observations qualitatively.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
N. Sundaram ◽  
K. A. Thole

The endwall of a first-stage vane experiences high heat transfer and low adiabatic effectiveness levels because of high turbine operating temperatures and formation of leading edge vortices. These vortices lift the coolant off the endwall and pull the hot mainstream gases toward it. The region of focus for this study is the vane-endwall junction region near the stagnation location where cooling is very difficult. Two different film-cooling hole modifications, namely, trenches and bumps, were evaluated to improve the cooling in the leading edge region. This study uses a large-scale turbine vane cascade with a single row of axial film-cooling holes at the leading edge of the vane endwall. Individual hole trenches and row trenches were placed along the complete row of film-cooling holes. Two-dimensional semi-elliptically shaped bumps were also evaluated by placing the bumps upstream and downstream of the film-cooling row. Tests were carried out for different trench depths and bump heights under varying blowing ratios. The results indicated that a row trench placed along the row of film-cooling holes showed a greater enhancement in adiabatic effectiveness levels when compared to individual hole trenches and bumps. All geometries considered produced an overall improvement to adiabatic effectiveness levels.


Author(s):  
Nojin Park ◽  
Changmin Son ◽  
Jangsik Yang ◽  
Changyong Lee ◽  
Kidon Lee

A series of experiments were conducted to investigate the detailed heat transfer characteristics of a large scaled model of a turbine blade internal cooling system. The cooling system has one passage in the leading edge and a triple passage for the remained region with two U-bends. A large scaled model (2 times) is designed to acquire high resolution measurement. The similarity of the test model was conducted with Reynolds number at the inlet of the internal cooling system. The model is designed to simulate the flow at engine condition including film extractions to match the changes in flowrates through the internal cooling system. Also, 45 deg ribs were installed for heat transfer enhancement. The experiments were performed varying Reynolds number in the range of 20,000 to 100,000 with and without ribs under stationary condition. This study employs transient heat transfer technique using thermochromic liquid crystal (TLC) to obtain full surface heat transfer distributions. The results show the detailed heat transfer distributions and pressure loss. The characteristics of pressure loss is largely dependent on the changes in cross-sectional area along the passages, the presence of U-bends and the extraction of coolant flow through film holes. The local and area averaged Nusselt number were compared to available correlations. Finally, the thermal performance counting the heat transfer enhancement as well as pressure penalty is presented.


Sign in / Sign up

Export Citation Format

Share Document