Thermal Design and Optimization of Harsh Environment Power Electronics in Natural Convection Heat Transfer

Author(s):  
Mehmet Arik ◽  
Manoj Nagulapally ◽  
Steven Brzozowski ◽  
John Glaser

A study of thermal management of a harsh environment power electronics system is presented. The thermal environments were found to be between 65 °C and 90 °C that is considerably higher than many traditional electronics applications. A modular, low cost, and passive air-cooling system was desired. An analytical model was developed to obtain the heat transfer characteristics. Further performance verification of the thermal management solution was completed using a commercially available CFD tool. A small footprint area for thermal design of the power electronics connected with an electrically isolating low-conductivity material to the heat sink increased the challenge. A further thermal performance enhancement was achieved with the addition of a heat spreader between power electronics and the heat sink, and optimization of the heat spreader was achieved by utilizing FEM technique.

Author(s):  
Ying Feng Pang ◽  
Elaine P. Scott ◽  
Zhenxian Liang ◽  
J. D. van Wyk

The objective of this work is to quantify the advantages of using double-sided cooling as the thermal management approach for the integrated power electronics modules. To study the potential advantage of the Embedded Power packaging method for the double-sided cooling, experiments were conducted. Three different cases were studied. To eliminate the effect of the heat sink on either side of the module, no heat sink was used in all three cases. The thermal tests were conducted such that the integrated power electronics modules were placed in the middle of flowing air in an insulated wind tunnel. Modules without additional top DBC, with additional top DBC, and with additional top DBC as well as heat spreaders on both sides were tested under the same condition. A common parameter, junction-to-ambient thermal resistance, was used to compare the thermal performance of these three cases. Despite the shortcoming of this parameter in describing the three-dimensional heat flow within the integrated power electronics modules, the concept of the thermal resistance is still worthwhile for evaluating various cooling methods for the module. The results show that increasing the top surface area can help in transferring the heat from the heat source to the ambient through the top side of the module. Consequently, the ability to handle higher power loss can also be increased. In summary, the Embedded Power technology provides an opportunity for implementing double-sided cooling as thermal management approach compared to modules with wire-bonded interconnects for the multichips.


Author(s):  
Donald C. Price ◽  
W. Gerald Wyatt ◽  
Pete Townsend ◽  
Mark C. Woods ◽  
Brad W. Fennell

The design of a thermal management system for an airborne, infrared, optical telescope system is described. This system provides transient thermal management for the optical elements of the system beginning at a high-temperature soak condition of 71°C (159.8°F) on the ground to a low-temperature operating condition of −30°C (−22°F) to −40°C (−40° F) within 45 min after aircraft takeoff. An active cooling system is employed to enable this rapid cooldown. In addition to the low-temperature requirement, the mirrors and lenses must be cooled so that temperature gradients across the optical elements are on the order of 1°C (33.8 °F) to 2°C (35.6 °F). The ambient air available for ground cooling is specified by the military environment to be 55°C (131.0 °F). As the aircraft takes off and climbs to an altitude of 11,582.4 m (38 kft), the ambient air temperature decreases to a low-temperature of −22°C (−7.6 °F) for steady, level flight at at Mach 0.9, this ambient air temperature results in a ram air inlet temperature on the order of 13.5°C (56.3 °F), after the air is captured and diffused to Mach 0.2 prior to entry into a ram air heat exchanger. This ram air heat sink is used to provide a chilled liquid for cooling of optical elements and the turret housing the system. The low temperatures required for this system, which are on the order of −30°C (−22 °F) to −40°C (−40 °F), make the use of forced-convection, liquid-cooling problematic because of the tendancy of liquids to become quite viscous as they approach these low temperature levels. Furthermore, the use of a single-phase heat transfer process will result in temperature gradients within the system. For these reasons, cooling concepts employing single-phase cooling using chilled-liquids have been eliminated from consideration. A low-temperature, low-pressure refrigerant, R-404a, is used as the working fluid. The themal management system uses the optical elements as the evaporator of a two-phase cooling system. The liquid refrigerant is introduced into the optical elements at the saturation temperature and saturation pressure of the liquid. The flow rate of the refrigerant will be controlled in such a manner that all of the heat transfer takes place in the liquid-vapor mixture region of the thermodynamic diagram for R-404a with the refrigerant exiting the elements at an arbitraily determned quality of approximately 0.8. This will assure that all of the heat transfer will be by boiling heat transfer and will take place at a constant temperature and essentially a constant pressure. Since the heat transfer coefficients are large and the process takes place at essentially a constant temperature, the optical elements will be controlled at the saturation temperature of the refrigerant and will be essentially a constant temperature across the expanse of the optical surface. The thermal management system is comprised of an array of TECs configured as a condenser HX. This TEC HX uses ram air as the eventual heat sink and will provide chilled-liquid produced by a liquid-to-ram air HX as the heat sink for the hot side of the TEC array. This system utilizes the system mass as the evaporator and a TEC HX as the condenser in a two-phase heat transfer process to provide rapid cooldown of the system mass to low temperatures in a short period of time and maintain that mass at proper operating temperatures with essentially zero temperature gradients throughout the system.


Author(s):  
John Daly

With the ever increasing heat flux from next-generation chips forced convection cooling is beginning to reach its limits within current standard heat sink capabilities. Methods of extending the air cooling capabilities prior to a transition to liquid or refrigerant-based cooling which is seen as costly and complex, have become more critical. This paper investigates the enhanced heat transfer by the addition of active components upstream of a longitudinally finned heat sink. This paper addresses piezoelectric fans for natural and forced convection environments. Experimental measurements are taken for a low powered DC fan operating at a frequency of 114Hz. For the forced convection experiments a fully ducted flow was used. The main thrust of the paper is to determine the effects of piezoelectrics in augmenting forced convection systems at hot component locations. The effects on pressure drop, thermal resistance and pumping power with the addition of the technology are presented. The paper concludes by reporting on the performance enhancement and limitations of the piezoelectric fans compared to the conventional longitudinally finned heat sink geometry.


Author(s):  
Kawthar Kasim ◽  
Arun Muley ◽  
Michael Stoia ◽  
Foluso Ladeinde

Aerospace system efficiency improvement and capacity growth has fueled demand for innovative, affordable and scalable thermal management technologies. Recent advancements in additive manufacturing (AM) and materials has extended the thermal design space for heat exchangers, cold plates, heat sinks, and heat pipes. Novel heat transfer enhancement techniques, along with design and system interface innovations, offer attractive cooling solutions for use in numerous aircraft systems. These advances are becoming increasingly relevant in aircraft systems as customers are demanding the use of air-cooling instead of liquid-cooling with minimal impact on overall energy conversion efficiency, installed volume and weight. This paper provides an overview of Boeing-led advances in analysis, design, fabrication and testing of next generation heat transfer devices. A case study is presented to provide insight into a methodology for selection of heat transfer surfaces and design optimization for an air-to-air heat exchanger. Design considerations are presented for additive manufacturing of the thermal management devices using a range of high performance materials including aluminum, titanium, stainless steel, and conductive polymer composites.


2021 ◽  
Vol 163 ◽  
pp. 106796
Author(s):  
Yongtong Li ◽  
Liang Gong ◽  
Bin Ding ◽  
Minghai Xu ◽  
Yogendra Joshi

Author(s):  
Jun Su Park ◽  
Namgeon Yun ◽  
Hokyu Moon ◽  
Kyung Min Kim ◽  
Sin-Ho Kang ◽  
...  

This paper presents thermal analyses of the cooling system of a transition piece, which is one of the primary hot components in a gas turbine engine. The thermal analyses include heat transfer distributions induced by heat and fluid flow, temperature, and thermal stresses. The purpose of this study is to provide basic thermal and structural information on transition piece, to facilitate their maintenance and repair. The study is carried out primarily by numerical methods, using the commercial software, Fluent and ANSYS. First, the combustion field in a combustion liner with nine fuel nozzles is analyzed to determine the inlet conditions of a transition piece. Using the results of this analysis, pressure distributions inside a transition piece are calculated. The outside of the transition piece in a dump diffuser system is also analyzed. Information on the pressure differences is then used to obtain data on cooling channel flow (one of the methods for cooling a transition piece). The cooling channels have exit holes that function as film-cooling holes. Thermal and flow analyses are carried out on the inside of a film-cooled transition piece. The results are used to investigate the adjacent temperatures and wall heat transfer coefficients inside the transition piece. Overall temperature and thermal stress distributions of the transition piece are obtained. These results will provide a direction to improve thermal design of transition piece.


2004 ◽  
Vol 126 (2) ◽  
pp. 247-255 ◽  
Author(s):  
Duckjong Kim ◽  
Sung Jin Kim

In the present work, a compact modeling method based on a volume-averaging technique is presented. Its application to an analysis of fluid flow and heat transfer in straight fin heat sinks is then analyzed. In this study, the straight fin heat sink is modeled as a porous medium through which fluid flows. The volume-averaged momentum and energy equations for developing flow in these heat sinks are obtained using the local volume-averaging method. The permeability and the interstitial heat transfer coefficient required to solve these equations are determined analytically from forced convective flow between infinite parallel plates. To validate the compact model proposed in this paper, three aluminum straight fin heat sinks having a base size of 101.43mm×101.43mm are tested with an inlet velocity ranging from 0.5 m/s to 2 m/s. In the experimental investigation, the heat sink is heated uniformly at the bottom. The resulting pressure drop across the heat sink and the temperature distribution at its bottom are then measured and are compared with those obtained through the porous medium approach. Upon comparison, the porous medium approach is shown to accurately predict the pressure drop and heat transfer characteristics of straight fin heat sinks. In addition, evidence indicates that the entrance effect should be considered in the thermal design of heat sinks when Re Dh/L>∼O10.


Sign in / Sign up

Export Citation Format

Share Document