Thermal management of power electronics with liquid cooled metal foam heat sink

2021 ◽  
Vol 163 ◽  
pp. 106796
Author(s):  
Yongtong Li ◽  
Liang Gong ◽  
Bin Ding ◽  
Minghai Xu ◽  
Yogendra Joshi
Author(s):  
Ying Feng Pang ◽  
Elaine P. Scott ◽  
Zhenxian Liang ◽  
J. D. van Wyk

The objective of this work is to quantify the advantages of using double-sided cooling as the thermal management approach for the integrated power electronics modules. To study the potential advantage of the Embedded Power packaging method for the double-sided cooling, experiments were conducted. Three different cases were studied. To eliminate the effect of the heat sink on either side of the module, no heat sink was used in all three cases. The thermal tests were conducted such that the integrated power electronics modules were placed in the middle of flowing air in an insulated wind tunnel. Modules without additional top DBC, with additional top DBC, and with additional top DBC as well as heat spreaders on both sides were tested under the same condition. A common parameter, junction-to-ambient thermal resistance, was used to compare the thermal performance of these three cases. Despite the shortcoming of this parameter in describing the three-dimensional heat flow within the integrated power electronics modules, the concept of the thermal resistance is still worthwhile for evaluating various cooling methods for the module. The results show that increasing the top surface area can help in transferring the heat from the heat source to the ambient through the top side of the module. Consequently, the ability to handle higher power loss can also be increased. In summary, the Embedded Power technology provides an opportunity for implementing double-sided cooling as thermal management approach compared to modules with wire-bonded interconnects for the multichips.


Author(s):  
Nihad Dukhan ◽  
Pable D. Quinones

A one-dimensional heat transfer model for open-cell metal foam is presented. The model includes both the conduction and the convection in the ligaments and in the pores of the foam. It uses the typical foam parameters provided by the manufacturers. Three aluminum foams having different relative surface areas, relative densities, ligament diameters, and number of pores per inch are analyzed and an effective thermal conductivity is determined. The heat transfer increases with the number of pores per inch. The resulting improvement in heat transfer can be as high as 57 percent over solid aluminum. The model is general enough such that it can handle other types of foam and geometries. For simulations using packages for thermal management, the foam can be modeled as a solid having an equivalent conductivity with an effective convection heat transfer on its outer surfaces. This eliminates the need to model the microscopic flow and heat transfer in and around the pores. It also allows quick feasibility studies and comparisons of different arrangements using aluminum foams for thermal management systems of high-power electronics. A few such simulations are presented in this work. The simulations show a big promise for using the foam in place of the traditional heat sinks for cooling high-power electronics: they reduce the cooling system’s weight substantially and reduce the maximum temperature significantly.


Author(s):  
Muhammad Jahidul Hoque ◽  
Alperen Günay ◽  
Andrew Stillwell ◽  
Yashraj Gurumukhi ◽  
Robert Pilawa-Podgurski ◽  
...  

Abstract Power electronics are vital for the generation, conversion, transmission, and distribution of electrical energy. Improving the efficiency, power density, and reliability of power electronics is an important challenge that can be addressed with electro-thermal co-design and optimization. Current thermal management approaches utilize metallic heat sinks, resulting in parasitic load generation due to different potentials between electronic components on the printed circuit board (PCB). To enable electrical isolation, a thermal interface material (TIM) or gap pad is placed between the PCB and heat sink, resulting in poor heat transfer. Here, we develop an approach to eliminate TIMs and gap pads through modularization of metallic heat sinks. The use of smaller modular heat sinks (MHSs) strategically placed on high power dissipation areas of the PCB enables elimination of electrical potential difference, and removal of electrical isolation materials, resulting in better cooling performance due to direct contact between devices and the heat sink. By studying a gallium nitride (GaN) 2kW DC-DC power converter as a test platform for electro-thermal co-design using the modular approach, and benchmarking performance with a commercial off-the-shelf heat sink design, we showed identical power dissipation rates with a 54% reduction in heat sink volume and a 8°C reduction in maximum GaN device temperature. In addition to thermal performance improvement, the MHS design showed a 73% increase in specific power density with a 22% increase in volumetric power density.


Author(s):  
Mehmet Arik ◽  
Manoj Nagulapally ◽  
Steven Brzozowski ◽  
John Glaser

A study of thermal management of a harsh environment power electronics system is presented. The thermal environments were found to be between 65 °C and 90 °C that is considerably higher than many traditional electronics applications. A modular, low cost, and passive air-cooling system was desired. An analytical model was developed to obtain the heat transfer characteristics. Further performance verification of the thermal management solution was completed using a commercially available CFD tool. A small footprint area for thermal design of the power electronics connected with an electrically isolating low-conductivity material to the heat sink increased the challenge. A further thermal performance enhancement was achieved with the addition of a heat spreader between power electronics and the heat sink, and optimization of the heat spreader was achieved by utilizing FEM technique.


Sign in / Sign up

Export Citation Format

Share Document