Experimental Investigation of Single-Phase Micro Jets Impingement Cooling for Electronic Applications

Author(s):  
Matteo Fabbri ◽  
Shanjuan Jiang ◽  
Vijay K. Dhir

Impinging jets for cooling of electronic equipment have been used by many researchers. Only few studies using arrays composed of a small number of jets are available in the literature. When very small jet diameters are used, the jet Reynolds number becomes quite small and no data are available for Reynolds number values below 500. In this work attention has been focused on circular arrays of free surface micro jets. Experiments were conducted by employing three jet pitches, 1, 2 and 3 mm and four jet diameters 50, 100, 150 and 250 μm and two different fluids, DI water and FC 40. The jet Reynolds number range was varied between 90 and 2000 while the Prandtl number varied from 6 to 84. Heat fluxes as high as 250 W/cm2 could be removed when water was utilized. Experimental data have been correlated within ±20%.

2017 ◽  
Vol 825 ◽  
pp. 795-824 ◽  
Author(s):  
Robert Wilke ◽  
Jörn Sesterhenn

Direct numerical simulations (DNS) of subsonic and supersonic impinging jets with Reynolds numbers of 3300 and 8000 are carried out to analyse their statistical properties with respect to heat transfer. The Reynolds number range is at low or moderate values in terms of practical applications, but very high regarding the technical possibilities of DNS. A Reynolds number of 8000 is technically relevant for the cooling of turbine blades. In this case, the flow is dominated by primary and secondary vortex rings. Statistics of turbulent heat fluxes and Reynolds stresses as well as the Nusselt number are provided and brought into accordance with these vortices. Velocity and temperature fluctuations were found to have a positive influence on cooling of the impinging plate. Beside the description of the flow, a second aim of this article is the provision of data for improvement of turbulence models. Modern large eddy simulations are still not able to precisely predict impingement heat transfer (Dairay et al., Intl J. Heat Fluid Flow, vol. 50 (0), 2014, pp. 177–187). Common relations between heat and mass transfer respectively temperature and velocity fields are applied to the impinging jet. These relations include the Reynolds and Chilton Colburn analogy, the Crocco–Busemann relation and the generalised Reynolds analogy (GRA). It was found that the first two deliver useful values if the distance to the jet axis is larger than one diameter, away from the strong pressure gradient around the stagnation point. The GRA, in contrast, precisely predicts the mean temperature field if no axial velocity gradient is present. The estimation of temperature fluctuations according to the GRA fails. As third main topic of this article, the influence of the Mach number on heat transfer and the flow field, is studied. Against the common practise of neglecting compressibility effects in experimental Nusselt correlations, we observed that higher Mach numbers (up to 1.1) have a positive influence on heat transfer in the deflection zone due to higher flow fluctuations.


1971 ◽  
Vol 47 (1) ◽  
pp. 21-31 ◽  
Author(s):  
R. A. Despard ◽  
J. A. Miller

The results of an experimental investigation of separation in oscillating laminar boundary layers is reported. Instantaneous velocity profiles obtained with multiple hot-wire anemometer arrays reveal that the onset of wake formation is preceded by the initial vanishing of shear at the wall, or reverse flow, throughout the entire cycle of oscillation. Correlation of the experimental data indicates that the frequency, Reynolds number and dynamic history of the boundary layer are the dominant parameters and oscillation amplitude has a negligible effect on separation-point displacement.


Author(s):  
Todd M. Bandhauer ◽  
David R. Hobby ◽  
Chris Jacobsen ◽  
Dave Sherrer

In a variety of electronic systems, cooling of various components imposes a significant challenge. A major aspect that inhibits the performance of many cooling solutions is the thermal resistance between the chip package and the cooling structure. Due to its low thermal conductivity, the thermal interface material (TIM) layer imposes a significant thermal resistance on the chip to cooling fluid thermal path. Advanced cooling methods that bypass the TIM have shown great potential in research and some specialty applications, yet have not been adopted widely by industry due to challenges associated with practical implementation and economic constraints. One advanced cooling method that can bypass the TIM is jet impingement. The impingement cooling device investigated in the current study is external to the integrated circuit (IC) package and could be easily retrofitted onto any existing microchip, similar to a standard heatsink. Jet impingement cooling has proven effective in previous studies. However, it has been shown that jet-to-jet interference severely degrades thermal performance of an impinging jet array. The present research addresses this challenge by utilizing a flow path geometry that allows for withdrawal of the impinging fluid immediately adjacent to each jet in the array. In this study, a jet impingement cooling solution for high-performance ICs was developed and tested. The cooling device was fabricated using modern advanced manufacturing techniques and consisted of an array of micro-scale impinging jets. A second array of fluid return paths was overlain across the jet array to allow for direct fluid extraction in the immediate vicinity of each jet, and fluid return passages were oriented in parallel to the impinging jets. The following key geometric parameters were utilized in the device: jet diameter (D = 300μm), distance from jet to impinging surface (H/D = 2.5), spacing between jets (S/D = 8), spacing between fluid returns (Sr/D = 8), diameter of fluid returns (Dr/D = 5). The device was mounted to a 2cm × 2cm uniformly heated surface which produced up to 165W and the resulting fluid-to-surface temperature difference was measured at a variety of flow rates. For this study, the device was tested using single-phase water. Jet Reynolds number ranged from 300–1500 and an average heat transfer coefficient of 13,100 W m−2 K−1 was achieved at a Reynolds number of only Red = 305.


Author(s):  
John O’Connor ◽  
Jeff Punch ◽  
Nicholas Jeffers ◽  
Jason Stafford

Microfluidic cooling technologies for future electronic and photonic microsystems require more efficient flow configurations to improve heat transfer without a hydrodynamic penalty. Although conventional microchannel heat sinks are effective at dissipating large heat fluxes, their large pressure drops are a limiting design factor. There is some evidence in the literature that obstacles such as pillars placed in a microchannel can enhance downstream convective heat transfer with some increase in pressure drop. In this paper, measured head-loss coefficients are presented for a set of single microchannels of nominal hydraulic diameter 391μm and length 30mm, each containing a single, centrally-located cylindrical pillar covering a range of confinement ratios, β = 0.1–0.7, over a Reynolds number range of 40–1900. The increase in head-loss due to the addition of the pillar ranged from 143% to 479%, compared to an open channel. To isolate the influence of the pillar, the head-loss contribution of the open channel was extracted from the data for each pillar configuration. The data was curve-fitted to a decaying power-law relationship. High coefficients of determination were recorded with low root mean squared errors, indicating good fits to the data. The data set was surface-fitted with a power law relationship using the Reynolds number based on the cylinder diameter. This was found to collapse the data well below a Reynolds number of 425 to an accuracy of ± 20%. Beyond this Reynolds number an inflection point was observed, indicating a change in flow regime similar to that of a cylinder in free flow. This paper gives an insight into the hydrodynamic behavior of a microchannel containing cylindrical pillars in a laminar flow regime, and provides a practical tool for determining the head-loss of a configuration that has been demonstrated to improve downstream heat transfer in microchannels.


Author(s):  
Matthias Ku¨rner ◽  
Carsten Schneider ◽  
Martin G. Rose ◽  
Stephan Staudacher ◽  
Jochen Gier

The new LP turbine test rig “ATRD” at the Institute of Aircraft Propulsion Systems (ILA) at Stuttgart University has been used to study the detailed effects of Reynolds number variation. The two-stage LP turbine has been developed in a cooperation of ILA and MTU Aero Engines GmbH. Changes in the turbine characteristics are discussed. Five hole probe area traverse data has been acquired at exit from each row of aerofoils across a broad range of Reynolds numbers, over 88,000 down to 35,000. The experimental data is supported by multi-row steady CFD predictions. The behaviour of wakes, loss cores and secondary deviations is identified across the Reynolds number range. The present study is focusing on the effects of Reynolds number variation on the vane of the second stage.


2014 ◽  
Vol 660 ◽  
pp. 684-688 ◽  
Author(s):  
Khamisah Abdul Hamid ◽  
Wan Hamzah Azmi ◽  
Rizalman Mamat ◽  
Nur Ashikin Usri

The needs to improve the efficiency of coolants undeniably become one of the concerns in cooling systems technologies nowadays. Nanofluid as coolant is invented and studied where it can provide better option for users due to augmentation in properties. This study provides experimental investigation on Titanium Oxide dispersed in water and ethylene glycol mixture under transition region with Reynolds number range of 2000 < Re <10000. Three volume concentrations are used which are 0.5 %, 1.0 % and 1.5 % for heat transfer experimental investigation under working temperature of 30 °C at constant heat flux of 600 W. The Nusselt number of the nanofluid increase with the increasing of Reynolds number at 1.5 % concentration, slightly higher than based fluid. The finding on the heat transfer coefficient shows enhancement of 2.1 % achieved by Titanium Oxide nanofluid at 1.5 % volume concentration. For 0.5 % and 1.0 % concentration, no enhancement of heat transfer achieved for the fluid flow under transition region at temperature of 30 °C.


1996 ◽  
Vol 118 (2) ◽  
pp. 343-349 ◽  
Author(s):  
K. M. Graham ◽  
S. Ramadhyani

Experimental data and analytical predictions for air/liquid mist jet cooling of small heat sources are presented. The mist jet was created using a coaxial jet atomizer, with a liquid jet of diameter 190 μm located on the axis of an annular air jet of diameter 2 mm. The impingement surface was a square of side 6.35 mm. Experimental data were obtained with mists of both methanol and water. Surface-averaged heat fluxes as high as 60 W/cm2 could be dissipated with the methanol/air mist while maintaining the target surface below 70°C. With the water/air mist, a heat flux of 60 W/cm2 could be dissipated with the target surface at 80°C. Major trends in the data and model predictions have been explained in terms of the underlying hydrodynamic and heat transfer phenomena.


1964 ◽  
Vol 86 (2) ◽  
pp. 180-186 ◽  
Author(s):  
M. W. Maresca ◽  
O. E. Dwyer

Experimental results were obtained for the case of in-line flow of mercury through an unbaffled bundle of circular rods, and they were compared with theoretical predictions. The bundle consisted of 13 one-half-in-dia rods arranged in an equilateral triangular pattern, the pitch:diameter ratio being 1.750. Measurements were taken only on the central rod. Six different rods were tested. All rods in the bundle were electrically heated to provide equal and uniform heat fluxes throughout the bundle. The rods were of the Calrod type. The test rods had copper sheaths with fine thermocouples imbedded below the surface for measuring surface temperatures. Some rods were plated with a layer of nickel, followed by a very thin layer of copper, to provide “wetting” conditions, while others were chromeplated to provide “nonwetting” conditions. Heat-transfer coefficients were obtained under the following conditions: (a) Prandtl number, 0.02; (b) Reynolds number range, 7500 to 200,000; (c) Peclet number range, 150 to 4000; (d) “Wetting” versus “nonwetting”; (e) Both transition and fully established flow; (f) Variation of Lf/De ratio from 4 to 46. The precision of the results is estimated to be within 2 to 3 percent. An interesting finding, consistent with earlier predictions, was that the Nusselt number, under fully established turbulent-flow conditions, remained essentially constant, at the lower end of the turbulent flow regime, until a Reynolds number of about 40,000 was reached.


2017 ◽  
Vol 829 ◽  
pp. 486-511 ◽  
Author(s):  
K. W. L. Wong ◽  
J. Zhao ◽  
D. Lo Jacono ◽  
M. C. Thompson ◽  
J. Sheridan

While flow-induced vibration of bluff bodies has been extensively studied over the last half-century, only limited attention has been given to flow-induced vibration of elastically mounted rotating cylinders. Since recent low-Reynolds-number numerical work suggests that rotation can enhance or suppress the natural oscillatory response, the former could find applications in energy harvesting and the latter in vibration control. The present experimental investigation characterises the dynamic response and wake structure of a rotating circular cylinder undergoing vortex-induced vibration at a low mass ratio ($m^{\ast }=5.78$) over the reduced velocity range leading to strong oscillations. The experiments were conducted in a free-surface water channel with the cylinder vertically mounted and attached to a motor that provided constant rotation. Springs and an air-bearing system allow the cylinder to undertake low-damped transverse oscillations. Under cylinder rotation, the normalised frequency response was found to be comparable to that of a freely vibrating non-rotating cylinder. At reduced velocities consistent with the upper branch of a non-rotating transversely oscillating cylinder, the maximum oscillation amplitude increased with non-dimensional rotation rate up to $\unicode[STIX]{x1D6FC}\approx 2$. Beyond this, there was a sharp decrease in amplitude. Notably, this critical value corresponds approximately to the rotation rate at which vortex shedding ceases for a non-oscillating rotating cylinder. Remarkably, at $\unicode[STIX]{x1D6FC}=2$ there was approximately an 80 % increase in the peak amplitude response compared to that of a non-rotating cylinder. The observed amplitude response measured over the Reynolds-number range of ($1100\lesssim Re\lesssim 6300$) is significantly different from numerical predictions and other experimental results recorded at significantly lower Reynolds numbers.


Author(s):  
S S Quadri ◽  
S F Benjamin ◽  
C A Roberts

This study investigates oblique entry pressure loss in automotive catalyst monoliths. Experiments have been performed on a specially designed flow rig using different lengths of monolith (17—100 mm) over a range of Reynolds number and angles of incidence (0–75°). Losses were found to be a function of Reynolds number and angle of incidence and a general correlation has been derived. Computational fluid dynamics predictions of the flow distribution across axisymmetric catalyst assemblies have been performed. Incorporating the oblique entry loss provided much better agreement with experimental data with the assumption that such losses were constant above an angle of incidence of 81°.


Sign in / Sign up

Export Citation Format

Share Document