Heat Transfer Performance of Titanium Oxide in Ethylene Glycol Based Nanofluids under Transition Flow

2014 ◽  
Vol 660 ◽  
pp. 684-688 ◽  
Author(s):  
Khamisah Abdul Hamid ◽  
Wan Hamzah Azmi ◽  
Rizalman Mamat ◽  
Nur Ashikin Usri

The needs to improve the efficiency of coolants undeniably become one of the concerns in cooling systems technologies nowadays. Nanofluid as coolant is invented and studied where it can provide better option for users due to augmentation in properties. This study provides experimental investigation on Titanium Oxide dispersed in water and ethylene glycol mixture under transition region with Reynolds number range of 2000 < Re <10000. Three volume concentrations are used which are 0.5 %, 1.0 % and 1.5 % for heat transfer experimental investigation under working temperature of 30 °C at constant heat flux of 600 W. The Nusselt number of the nanofluid increase with the increasing of Reynolds number at 1.5 % concentration, slightly higher than based fluid. The finding on the heat transfer coefficient shows enhancement of 2.1 % achieved by Titanium Oxide nanofluid at 1.5 % volume concentration. For 0.5 % and 1.0 % concentration, no enhancement of heat transfer achieved for the fluid flow under transition region at temperature of 30 °C.

2016 ◽  
Vol 93 ◽  
pp. 537-548 ◽  
Author(s):  
Yanjun Li ◽  
José Fernández-Seara ◽  
Kai Du ◽  
Ángel Álvarez Pardiñas ◽  
Luis Lugo Latas ◽  
...  

Author(s):  
Klaudia Chmiel-Kurowska ◽  
Grzegorz Dzido ◽  
Andrzej Gierczycki ◽  
Andrzej B. Jarze˛bski

Experimental investigations of convective heat transfer in nanofluid based on the Cu (approx. 0.15% and 0.25% vol.) nanoparticles synthesized in polyol process were conducted at constant heat flux conditions. A 30% increase in average heat transfer coefficient was found against the results obtained for a pure host liquid (ethylene glycol). Even more significant increase was in the entrance region.


2017 ◽  
Vol 7 (2) ◽  
pp. 1496-1503
Author(s):  
K. Boukerma ◽  
M. Kadja

In this work, a numerical study has been performed on the convective heat transfer of Al2O3/Water-Ethylene Glycol (EG) and CuO/(W-EG) nanofluids flowing through a circular tube with circumferentially non-uniform heating (constant heat flux) under the laminar flow condition. We focus on the study of the effect of EG-water mixtures as base fluids with mass concentration ranging from 0% up to 100% ethylene glycol on forced convection. The effect on the flow and the convective heat transfer behavior of nanoparticle types, their volume fractions (φ=1-5%) and Reynolds number are also investigated. The results obtained show that the highest values of the average heat transfer coefficient is observed between 40% and 50% of EG concentration. The average Nusselt number increases with the increase in EG concentration in the base fluid, and the increase in the Reynolds number and volume fraction. For concentrations of EG above 60%, and for all volume fractions, the increase of thermal performance of nanofluids became inversely proportional to the increase of Reynolds number. In addition, CuO/(W-EG) nanofluids show the best thermal performance compared with Al2O3/ (W-EG) nanofluids.


Author(s):  
M. Abdelkader ◽  
H. Ameur ◽  
Y. Menni

The current paper reports the results of numerical research on the magnetic Ni nanofluid flowing in a tube, developing turbulent flows under constant heat flux conditions. The numerical investigations are conducted for a Reynolds number range from 3,000 to 22,000, and a particle concentration range of 0% to 0.6%. The effects of the Reynolds number on the friction factor and Nusselt number are computed and compared satisfactorily with the experimental results of the literature. The classical correlations of Gnielinski, Notter – Rouse, and Pak and Cho are verified by predicting the Nusselt number of the Ni nanofluid. The obtained results revealed an enhancement in the heat transfer with the increase of magnetic Ni particle volume fraction and Reynolds number.


Author(s):  
Matthew A. Smith ◽  
Randall M. Mathison ◽  
Michael G. Dunn

Heat transfer distributions are presented for a stationary three passage serpentine internal cooling channel for a range of engine representative Reynolds numbers. The spacing between the sidewalls of the serpentine passage is fixed and the aspect ratio (AR) is adjusted to 1:1, 1:2, and 1:6 by changing the distance between the top and bottom walls. Data are presented for aspect ratios of 1:1 and 1:6 for smooth passage walls and for aspect ratios of 1:1, 1:2, and 1:6 for passages with two surfaces turbulated. For the turbulated cases, turbulators skewed 45° to the flow are installed on the top and bottom walls. The square turbulators are arranged in an offset parallel configuration with a fixed rib pitch-to-height ratio (P/e) of 10 and a rib height-to-hydraulic diameter ratio (e/Dh) range of 0.100 to 0.058 for AR 1:1 to 1:6, respectively. The experiments span a Reynolds number range of 4,000 to 130,000 based on the passage hydraulic diameter. While this experiment utilizes a basic layout similar to previous research, it is the first to run an aspect ratio as large as 1:6, and it also pushes the Reynolds number to higher values than were previously available for the 1:2 aspect ratio. The results demonstrate that while the normalized Nusselt number for the AR 1:2 configuration changes linearly with Reynolds number up to 130,000, there is a significant change in flow behavior between Re = 25,000 and Re = 50,000 for the aspect ratio 1:6 case. This suggests that while it may be possible to interpolate between points for different flow conditions, each geometric configuration must be investigated independently. The results show the highest heat transfer and the greatest heat transfer enhancement are obtained with the AR 1:6 configuration due to greater secondary flow development for both the smooth and turbulated cases. This enhancement was particularly notable for the AR 1:6 case for Reynolds numbers at or above 50,000.


2015 ◽  
Vol 813-814 ◽  
pp. 685-689
Author(s):  
M. Vijay Anand Marimuthu ◽  
B. Venkatraman ◽  
S. Kandhasamy

This paper investigates the performance and characteristics of saw tooth shape micro channel in the theoretical level. If the conduct area of the nano fluid increases the heat transfer also increases. The performance curve has drawn Reynolds number against nusselt number, heat transfer co efficient. Pressure drop plays an important role in this device. If pressure drop is high the heat transfer increases. The result in this experiment shows clearly that the heat transfer is optimized.


2014 ◽  
Vol 22 (01) ◽  
pp. 1450005 ◽  
Author(s):  
SHUICHI TORII

This paper aims to study the convective heat transfer behavior of aqueous suspensions of nanoparticles flowing through a horizontal tube heated under constant heat flux condition. Consideration is given to the effects of particle concentration and Reynolds number on heat transfer enhancement and the possibility of nanofluids as the working fluid in various heat exchangers. It is found that (i) significant enhancement of heat transfer performance due to suspension of nanoparticles in the circular tube flow is observed in comparison with pure water as the working fluid, (ii) enhancement is intensified with an increase in the Reynolds number and the nanoparticles concentration, and (iii) substantial amplification of heat transfer performance is not attributed purely to the enhancement of thermal conductivity due to suspension of nanoparticles.


Author(s):  
Sam Ghazi-Hesami ◽  
Dylan Wise ◽  
Keith Taylor ◽  
Peter Ireland ◽  
Étienne Robert

Abstract Turbulators are a promising avenue to enhance heat transfer in a wide variety of applications. An experimental and numerical investigation of heat transfer and pressure drop of a broken V (chevron) turbulator is presented at Reynolds numbers ranging from approximately 300,000 to 900,000 in a rectangular channel with an aspect ratio (width/height) of 1.29. The rib height is 3% of the channel hydraulic diameter while the rib spacing to rib height ratio is fixed at 10. Heat transfer measurements are performed on the flat surface between ribs using transient liquid crystal thermography. The experimental results reveal a significant increase of the heat transfer and friction factor of the ribbed surface compared to a smooth channel. Both parameters increase with Reynolds number, with a heat transfer enhancement ratio of up to 2.15 (relative to a smooth channel) and a friction factor ratio of up to 6.32 over the investigated Reynolds number range. Complementary CFD RANS (Reynolds-Averaged Navier-Stokes) simulations are performed with the κ-ω SST turbulence model in ANSYS Fluent® 17.1, and the numerical estimates are compared against the experimental data. The results reveal that the discrepancy between the experimentally measured area averaged Nusselt number and the numerical estimates increases from approximately 3% to 13% with increasing Reynolds number from 339,000 to 917,000. The numerical estimates indicate turbulators enhance heat transfer by interrupting the boundary layer as well as increasing near surface turbulent kinetic energy and mixing.


Author(s):  
Jin Xu ◽  
Jiaxu Yao ◽  
Pengfei Su ◽  
Jiang Lei ◽  
Junmei Wu ◽  
...  

Convective heat transfer enhancement and pressure loss characteristics in a wide rectangular channel (AR = 4) with staggered pin fin arrays are investigated experimentally. Six sets of pin fins with the same nominal diameter (Dn = 8mm) are tested, including: Circular, Elliptic, Oblong, Dropform, NACA and Lancet. The relative spanwise pitch (S/Dn = 2) and streamwise pitch (X/Dn = 4.5) are kept the same for all six sets. Same nominal diameter and arrangement guarantee the same blockage area in the channel for each set. Reynolds number based on channel hydraulic diameter is from 10000 to 70000 with an increment of 10000. Using thermochromic liquid crystal (R40C20W), heat transfer coefficients on bottom surface of the channel are achieved. The obtained friction factor, Nusselt number and overall thermal performance are compared with the previously published data from other groups. The averaged Nusselt number of Circular pin fins is the largest in these six pin fins under different Re. Though Elliptic has a moderate level of Nusselt number, its pressure loss is next to the lowest. Elliptic pin fins have pretty good overall thermal performance in the tested Reynolds number range. When Re>40000, Lancet has a same level of performance as Circular, but its pressure loss is much lower than Circular. These two types are both promising alternative configuration to Circular pin fin used in gas turbine blade.


Sign in / Sign up

Export Citation Format

Share Document