Generalized CHF Correlation With Uniform Heat Flux for Annulus

2005 ◽  
Author(s):  
Sung-Woo Lee ◽  
Dong-Kook Kim ◽  
W. Jae-Woo Shim

A new generalized CHF (Critical Heat Flux) correlation was suggested for water flow in uniformly heated Annulur tubes. The parametric ranges of experimental CHF data used for present analysis were as follows: 0.540< P (pressure) < 15.146 MPa, 197.77 < G (mass flux) < 653.52 kg/m2s, I.D (inner diameter) = 9.54 mm, O.D (outer diameter) = 19.4 mm, L (length) = 1.84 m, 75.48 < Inlet subcooling < 358.78 kJ/kg, 490.48 < qc (CHF) < 1775.89 KW/m2, and 0.120 < Xe (exit qualities) < 0.536. The new correlation was based on local condition hypothesis, and therefore consisted of the local variables such as tube diameter, pressure, mass flux of water and true mass fraction of steam. In addition, HBM (Heat Balance Method) that leads to the more accurate prediction of CHF than DSM (Direct Substitution Method) was used in developing the correlation. The new correlation was compared with 5 existing CHF correlations that showed comparatively good prediction in world literature. The new correlation predicted CHF better than the other ones with average error of −1.03% and root mean square error of 11.91%.

Volume 3 ◽  
2004 ◽  
Author(s):  
W. Jaewoo Shim ◽  
Ji-Su Lee

In recent years it is well known that models based on the local condition hypothesis give significant correlations for the prediction of CHF (Critical Heat Flux), using only few local variables. In this work, a study was carried out to develop a generalized CHF correlation in vertical round tubes with uniform heat flux. For this analysis, a CHF database that composed of over 10,000 CHF data points, which were collected from 12 different sources, was used. The actual data used in the development of this correlation, after the elimination of some questionable data, consisted of 8,951 data points with the following parameter ranges: 0.101 ≤ P (pressure) ≤ 20.679 MPa, 9.92 ≤ G (mass flux) ≤ 18,619.39 kg/m2s, 0.00102 ≤ D (diameter) ≤ 0.04468 m, 0.03 ≤ L (length) ≤ 4.97 m, 0.11 ≤ qc (CHF) ≤ 21.42 MW/m2, and −0.87 ≤ Xe (exit qualities) ≤ 1.58. The result of this work showed that regardless of various flow patterns and regimes that exist in the wide flow conditions, the prediction of CHF can be made accurately with few major local variables: the system pressure (P), tube diameter (D), mass flux of water (G), and true mass flux of vapor (GXt). The new correlation was compared with 5 well-known CHF correlations published in world literature. The new correlation can predict CHF within the root mean square error of 13.44% using the heat balance method with average error of −1.34%.


2005 ◽  
Author(s):  
W. Jaewoo Shim ◽  
Joo-Yong Park ◽  
Ji-Su Lee ◽  
Dong Kook Kim

In this study a method to predict CHF (Critical Heat Flux) in vertical round tubes with cosine heat flux distribution was examined. For this purpose a uniform correlation, based on local condition hypothesis, was developed from 9,366 CHF data points of uniform heat flux heaters. The CHF data points used were collected from 13 different sources had the following parameter ranges: 1.01 ≤ P (pressure) ≤ 206.79 bar, 9.92 ≤ G (mass flux) ≤ 18,619.39 kg/m2s, 0.00102 ≤ D (diameter) ≤ 0.04468 m, 0.0254 ≤ L (length) ≤ 4.966 m, 0.11 ≤ qc (CHF) ≤ 21.42 MW/m2, and −0.87 ≤ X (exit qualities) ≤ 1.58. The result of this work showed that the uniform CHF correlation could be used to predict CHF accurately in a non-uniform heat flux heater for wide flow conditions. Furthermore, the location, where CHF occurs in non-uniform heat flux distribution, can also be determined accurately with the local variables: the system pressure (P), tube diameter (D), mass flux of water (G), and true mass flux of vapor (GXt). The new correlation predicted CHF with cosine heat flux, 297 data points from 5 different published sources, within the root mean square error of 12.42% and average error of 1.06% using the heat balance method.


Author(s):  
W. Jaewoo Shim ◽  
Joo-Yong Park

In this study, a total of 2,870 high pressure (70 bar ≤ P ≤ 206 bar) data points of critical heat flux (CHF) in uniformly heated round vertical tube for water were collected from 5 different published sources. The data consisted of following parameter ranges: 28.07 ≤ G (mass flux) ≤ 10,565.03 kg/m2s, 1.91 ≤ D (diameter) ≤44.68 mm, 40 ≤L (length) ≤4966 mm, 0.14 ≤qc (CHF) ≤ 9.94 MW/m2, and −0.85 ≤X (exit qualities) ≤ 1.22. With these data a comparative analysis is made on available correlations, and a new correlation is presented. The new high pressure CHF correlation, as in the low and medium pressure cases of earlier studies, comprised of local variables, namely, “true” mass quality, mass flux, tube diameter, and two parameters as a function of pressure only. This study reaffirms our earlier findings that by incorporating “true” mass quality in the local condition hypothesis, the prediction of CHF under these conditions can be obtained quite accurately, overcoming the difficulties of flow instability and buoyancy effects that are inherent in the phenomena. The new correlation predicts the CHF data significantly better than those currently available correlations, with average error 0.12% and rms error 13.52% by the heat balance method.


Author(s):  
Han Wang ◽  
Qincheng Bi ◽  
Linchuan Wang ◽  
Haicai Lv ◽  
Laurence K. H. Leung

An experiment has recently been performed at Xi’an Jiaotong University to study the wall temperature and pressure drop at supercritical pressures with upward flow of water inside a 2×2 rod bundle. A fuel-assembly simulator with four heated rods was installed inside a square channel with rounded corner. The outer diameter of each heated rod is 8 mm with an effective heated length of 600 mm. Experimental parameters covered the pressure of 23–28 MPa, mass flux of 350–1000 kg/m2s and heat flux on the rod surface of 200–1000 kW/m2. According to the experimental data, it was found that the circumferential wall temperature distribution of a heated rod is not uniform. The temperature difference between the maximum and the minimum varies with heat flux and/or mass flux. Heat transfer characteristics of supercritical water in bundle were discussed with respect to various heat fluxes. The effect of heat flux on heat transfer in rod bundles is similar with that in tubes or annuli. In addition, flow resistance reflected in the form of pressure loss has also been studied. Experimental results showed that the total pressure drop increases with bulk enthalpy and mass flux. Four heat transfer correlations developed for supercritical pressures water were compared with the present test data. Predictions of Jackson correlation agrees closely with the experimental data.


Author(s):  
Nan Zhang ◽  
Yanchen Fu ◽  
Haoran Huang ◽  
Jie Wen ◽  
Nigeer Te

The flow resistance characteristics of aviation kerosene RP-3 in horizontal helical tubes at the supercritical pressure under heating condition are investigated. Both pressure drop and friction factor were examined under uniform heat flux of 50kW/m2−300kW/m2, mass flux from 786kg/m2s to 1375kg/m2s, and helical diameter from 20mm to 40mm. The influence of viscous factors on the resistance is analyzed to explore flow characteristics in a helical tube and provide a reference for the design of heat exchangers. Friction factor decreases with the increase of heat flux at low inlet temperatures 323K and 423K. It is explained that the viscosity changes more dramatically than the density. When the fluid inlet temperature is 523K and the fluid mean temperature Tb is close to pseudo-critical temperature, frictional flow resistance becomes significantly larger Tpc due to huge variations in thermal properties in the radical direction. The effect of centrifugal force makes the friction factor decline slowly. The friction factor goes up with the enlargement of mass flux when Tb>0.81Tpc. This phenomenon is caused by the larger radial velocity gradient under the large mass flux. Different helical diameters play the leading roles for the bending flow in the tubes.


Author(s):  
Ali Kos¸ar ◽  
Yoav Peles ◽  
Arthur E. Bergles ◽  
Gregory S. Cole

Critical heat flux (CHF) of water in circular stainless steel microchannels with inner diameters ranging from ∼127μm to ∼254 μm was investigated. Forty-five CHF data points were acquired over mass velocities ranging from 1,200 kg/m2s to 53,000 kg/m2s, heated lengths from 2 cm to 8 cm, and exit qualities from −0.2 to 0.15. Most of the exit qualities fell below 0.1. It was found that CHF conditions were more dependent on mass velocity and heated length than on exit thermal condition. The results were also compared to six CHF correlations, with a mean average error ranging from 22% to 261.8%. A new correlation was proposed to better predict the critical heat flux data under the thermal-hydraulic conditions studied in this investigation. In developing the correlation, 319 data points were added from two previous studies.


Author(s):  
V. S. Chandratre ◽  
A. A. Keste ◽  
N. K. Sane

Abstract Energy is a major area of concern for many industrial and engineering applications. For the development of energy efficient heat exchangers, heat transfer enhancement by passive inserts have growing research potential. The present study gives the numerical and experimental analysis of twisted tape insert in a circular tube for the range of Reynolds number between 5000 to 15000 with heat flux variation from 500W/m2 to 1.5 kW/m2 with air as working medium. A circular tube of 52.5 mm internal diameter, 60 mm outer diameter and 1000 mm length is used as test section with uniform heat flux. Twisted tape used is of Aluminum material having a pitch of 100 mm. Outside surface temperatures are measured at different locations on test section. Two ‘T’ type thermocouples are used to measure air temperature at inlet and outlet of test section. From numerical and experimental analysis it is observed that the Nusselt number increases for twisted tape as compared to smooth bare tube by 2.2–3.1 times. Again the Nusselt numbers obtained for smooth tube is compared with Dittus-Boelter and Gnielinski correlation and it is observed that the error is within acceptable limit of 10% variation. An error of 10% variation is observed in friction factor obtained by experimental analysis and Blasius and Petukov correlations.


Author(s):  
Dawei Zhao ◽  
Wanyu Xiong ◽  
Wenxing Liu ◽  
Jianjun Xu

Departure from nucleate boiling (DNB) type critical heat flux (CHF) is one of most important thermal criteria for nuclear reactor design. Concerning on the typical chopper-cosine heat flux profile at reactor core, it is of great significance to predict the CHF under non-uniform heating conditions for reactor design and the performance promotion of reactor system. Some correction factors are proposed for the prediction of CHF with non-uniform axial power shapes. In this study, a mechanistic DNB-type CHF model has been developed on the basis of liquid sublayer dryout mechanism. The non-uniform axial heat flux is taken into account of upstream memory effect on boiling crisis in this model. The predictions of present model and Tong’s non-uniform heat flux shape factor method are compared with the experimental results in the vertical tube with chopper-cosine axial heat flux distributions. The comparison results show the present model has fairly good prediction capability for DNB-type CHF under non-uniform heating condition.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012034
Author(s):  
J Van Nieuwenhuyse ◽  
A De Meulemeester ◽  
M De Paepe ◽  
S Lecompte

Abstract Supercritical heat transfer has already been studied extensively, however, the majority of these studies focused on water or CO2. Data on refrigerants, which are used in for example transcritical or supercritical organic Rankine cycles or heat pumps, is scarce. Nonetheless, this data is crucial in order to size the heat exchangers used in these systems without significant overdimensioning. Therefore it is necessary to gain insight into the complex nature of supercritical heat transfer. For that purpose, experimental data on supercritical heat transfer to the refrigerant R125 is discussed in this work. Measurements were performed on a previously built test rig, where the refrigerant flowed in a horizontal tube with an inner diameter of 24.77 mm. Pressure, mass flux and heat flux were varied, and their influence on supercritical heat transfer was investigated. In general, heat transfer is enhanced for an increase in mass flux or decrease in heat flux, and no distinct effect of pressure on the heat transfer is measured.


2008 ◽  
Author(s):  
T. P. Lagus ◽  
F. A. Kulacki

Heat transfer coefficients and bubble dynamics are reported for two-phase water flow in an array of 13 equally spaced microchannels over an area of 1 cm2. Each channel has Dh = 451 ± 3 8 μm, W/H = 0.8, and L/Dh = 22.2. Uniform heat flux is applied through the base, and wall temperatures are determined from thermocouple readings corrected for heat conduction effects. The upper surface is insulated and transparent. Single-phase heat transfer coefficients are obtained for 216 < Re < 2530 and 216 < G < 4100 kg/m2s and are in good agreement with comparable trends of existing correlations for developing flow and heat transfer, although a difference is seen due to the insulated upper surface. Two-phase experiments are run to determine overall heat transfer coefficients and bubble dynamics for a mass flux of 221 < G < 466 kg/sm2 and heat flux of 25 < q < 178 W/cm2. Heat transfer coefficients normalized with mass flux exhibit a trend comparable to that of available studies that use similar thermal boundary conditions. Two-phase flow visualization via shows expanding vapor slug flow as the primary flow regime, but bubbly flow and nucleation leading to elongated bubble flow are also observed. Analysis of bubble dynamics reveals a t1/3 dependence for bubble growth, and flow reversal is observed and quantified. Different speeds of the phase fronts are observed at the leading and trailing edges of elongated slugs once a bubble diameter equals the channel width. Bubble formation, growth, coalescence and detachment at the outlet of the array are characterized by the Weber number.


Sign in / Sign up

Export Citation Format

Share Document