scholarly journals Measurement of supercritical heat transfer to R125 in horizontal flow

2021 ◽  
Vol 2116 (1) ◽  
pp. 012034
Author(s):  
J Van Nieuwenhuyse ◽  
A De Meulemeester ◽  
M De Paepe ◽  
S Lecompte

Abstract Supercritical heat transfer has already been studied extensively, however, the majority of these studies focused on water or CO2. Data on refrigerants, which are used in for example transcritical or supercritical organic Rankine cycles or heat pumps, is scarce. Nonetheless, this data is crucial in order to size the heat exchangers used in these systems without significant overdimensioning. Therefore it is necessary to gain insight into the complex nature of supercritical heat transfer. For that purpose, experimental data on supercritical heat transfer to the refrigerant R125 is discussed in this work. Measurements were performed on a previously built test rig, where the refrigerant flowed in a horizontal tube with an inner diameter of 24.77 mm. Pressure, mass flux and heat flux were varied, and their influence on supercritical heat transfer was investigated. In general, heat transfer is enhanced for an increase in mass flux or decrease in heat flux, and no distinct effect of pressure on the heat transfer is measured.

Author(s):  
Xiaolong Yan ◽  
Wei Li ◽  
Weiyu Tang ◽  
Hua Zhu ◽  
Zhijian Sun ◽  
...  

Enhanced condensation heat transfer of two-phase flow on the horizontal tube side receives more and more concerns for its fundamentality and importance. Experimental investigations on convective condensation were performed respectively in different horizontal tubes: (i) a smooth tube (11.43 mm, inner diameter); (ii) a herringbone tube (11.43 mm, fin root diameter); and (iii) three enhanced surface (EHT) tubes (11.5 mm, equivalent inner diameter): 1EHT tube, 2EHT-1 tube and 2EHT-2 tubes. The surface of EHT tubes is enhanced by arrays of dimples with the background of petal arrays. Experiments were conducted at a saturation temperature of approximately 320 K; 0.8 inlet quality; and 0.2 outlet quality; 72–181 kg·m−2·s−1 mass flux using R22, R32 and R410A as the working fluid. The refrigerant R32 presents great heat transfer performance than R410A and R22 at low mass flux due to its higher latent heat of vaporization and larger thermal conductivity. The heat enhancement ratio of the herringbone tube is 2.72–2.82, rated number one. The primary dimples on the EHT tube increase turbulence and flow separation, and the secondary petal pattern produce boundary layer disruption to many smaller scale eddies. The 2EHT tubes are inferior to the 1EHT tube. A performance factor is used to evaluate the enhancement effect except of the contribution of area increase.


Author(s):  
C. Aprea ◽  
A. Greco ◽  
G. P. Vanoli

R22 is the most widely employed HCFC working fluid in vapour compression plant. HCFCs must be replaced within 2020. Major problems arise with the substitution of the working fluids, related to the decrease in performance of the plant. Therefore, extremely accurate design procedures are needed. The relative sizing of each of the components of the plant is crucial for cycle performance. For this reason, the knowledge of the new fluids heat transfer characteristics in condensers and evaporators is required. The local heat transfer coefficients and pressure drop of pure R22 and of the azeotropic mixture R507 (R125-R143a 50%/50% in weight) have been measured during convective boiling. The test section is a smooth horizontal tube made of a with a 6 mm I.D. stainless steel tube, 6 m length, uniformly heated by Joule effect. The effects of heat flux, mass flux and evaporation pressure on the heat transfer coefficients are investigated. The evaporating pressure varies within the range 3 ÷10 bar, the refrigerant mass flux within the range 200 ÷ 1000 kg/m2s, the heat flux within 0 ÷ 44 kW/m2. A comparison have been carried out between the experimental data and those predicted by means of the most credited literature relationships.


Author(s):  
M. D. Hambarde ◽  
Ramakant Shrivastava ◽  
S.R. Thorat ◽  
O.P. Dale

Due to higher ozone layer depletion potential of HCFC refrigerant, R22 which has been mostly used in house hold refrigeration will be phased out by 2020 as per Montreal Protocol and UNFCCC Regulations. R407C, a zeotropic refrigerant from HFC category is a promising refrigerants in place of R22. Performance evaluation of R407 is required to enhance its application in house hold refrigeration. Hence an experimental investigation is carried out to understand the heat transfer characteristics during flow boiling of R407C in a smooth horizontal tube of 13.386 mm inner diameter and 2m length. The experiment is performed under the operating conditions; (i) mass flux range 100 to 300 kg s-1m-2; (ii) heat flux within range 2 to 7 kWm-2; (iii) temperature range at inlet to test section -100C to +100C; (iv) average vapor quality within test section from 0.05 to 0.95.The effect of heat flux, mass flux, vapor quality, temperature glide on heat transfer coefficient, during evaporation of R407C are examined.


Author(s):  
Qingming Liu ◽  
Björn Palm ◽  
Henryk Anglart

3D simulations on confined bubbles in micro-channels with diameter of 1.24 mm were conducted. The working fluid is R134a with a mass flux range from 125kg/m2s to 375kg/m2s. The VOF model is chosen to capture the 2 phase interface while the geo-construction method was used to re-construct the 2-phase interface. A heated boundary wall with heat flux varying from 15kW/m2 to 102kW/m2 is supplied. The wall temperature was calculated. The effects of mass flux and heat flux are studied. The shape of the bubble was predicted by the simulation successfully and the results show that they are independent of the initial shape. Both thin film evaporation and micro convection enhance the heat transfer. However, the micro convection which is caused by bubble motion has greater contribution to the total heat transfer at the stage of bubble growth studied.


2011 ◽  
Vol 383-390 ◽  
pp. 811-815
Author(s):  
Hu Gen Ma ◽  
Jian Mei Bai ◽  
Rong Jian Xie ◽  
Wen Jing Tu

In this paper, the boiling heat transfer test rig was designed and built, while the characteristics of boiling Heat Transfer of refrigerants in micro-channel was researched. The wall temperature of micro-channel was measured by TH5104 Infrared thermography. The results showed that there were obvious variations for wall temperature of micro-channel along the axial direction when boiling heat transfer occurred in the micro-channel. The temperature distribution affected obviously by the heat flux, mass flow rate; vapor quality and heat transfer model.


Author(s):  
Koichi Araga ◽  
Keisuke Okamoto ◽  
Keiji Murata

This paper presents an experimental investigation of the forced convective boiling of refrigerant HCFC123 in a mini-tube. The inner diameters of the test tubes, D, were 0.51 mm and 0.30 mm. First, two-phase frictional pressure drops were measured under adiabatic conditions and compared with the correlations for conventional tubes. The frictional pressure drop data were lower than the correlation for conventional tubes. However, the data were qualitatively in accord with those for conventional tubes and were correlated in the form φL2−1/Xtt. Next, heat transfer coefficients were measured under the conditions of constant heat flux and compared with those for conventional tubes and for pool boiling. The heat transfer characteristics for mini-tubes were different from those for conventional tubes and quite complicated. The heat transfer coefficients for D = 0.51 mm increased with heat flux but were almost independent of mass flux. Although the heat transfer coefficients were higher than those for a conventional tube with D = 10.3 mm and for pool boiling in the low quality region, they decreased gradually with increasing quality. The heat transfer coefficients for D = 0.30 mm were higher than those for D = 0.51 mm and were almost independent of both mass flux and heat flux.


Author(s):  
Han Wang ◽  
Qincheng Bi ◽  
Linchuan Wang ◽  
Haicai Lv ◽  
Laurence K. H. Leung

An experiment has recently been performed at Xi’an Jiaotong University to study the wall temperature and pressure drop at supercritical pressures with upward flow of water inside a 2×2 rod bundle. A fuel-assembly simulator with four heated rods was installed inside a square channel with rounded corner. The outer diameter of each heated rod is 8 mm with an effective heated length of 600 mm. Experimental parameters covered the pressure of 23–28 MPa, mass flux of 350–1000 kg/m2s and heat flux on the rod surface of 200–1000 kW/m2. According to the experimental data, it was found that the circumferential wall temperature distribution of a heated rod is not uniform. The temperature difference between the maximum and the minimum varies with heat flux and/or mass flux. Heat transfer characteristics of supercritical water in bundle were discussed with respect to various heat fluxes. The effect of heat flux on heat transfer in rod bundles is similar with that in tubes or annuli. In addition, flow resistance reflected in the form of pressure loss has also been studied. Experimental results showed that the total pressure drop increases with bulk enthalpy and mass flux. Four heat transfer correlations developed for supercritical pressures water were compared with the present test data. Predictions of Jackson correlation agrees closely with the experimental data.


Author(s):  
Shuo Mao ◽  
Ridge A. Sibold ◽  
Stephen Lash ◽  
Wing F. Ng ◽  
Hongzhou Xu ◽  
...  

Abstract Nozzle guide vane platforms often employ complex cooling schemes to mitigate ever-increasing thermal loads on endwall. Understanding the impact of advanced cooling schemes amid the highly complex three-dimensional secondary flow is vital to engine efficiency and durability. This study analyzes and describes the effect of coolant to mainstream blowing ratio, momentum ratio and density ratio for a typical axisymmetric converging nozzle guide vane platform with an upstream doublet staggered, steep-injection, cylindrical hole jet purge cooling scheme. Nominal flow conditions were engine representative and as follows: Maexit = 0.85, Reexit/Cax = 1.5 × 106 and an inlet large-scale freestream turbulence intensity of 16%. Two blowing ratios were investigated, each corresponding to upper and lower engine extrema at M = 3.5 and 2.5, respectively. For each blowing ratio, the coolant to mainstream density ratio was varied between DR = 1.2, representing typical experimental neglect of coolant density, and DR = 1.95, representative of typical engine conditions. An optimal coolant momentum ratio between = 6.3 and 10.2 is identified for in-passage film effectiveness and net heat flux reduction, at which the coolant suppresses and overcomes secondary flows but imparts minimal turbulence and remains attached to endwall. Progression beyond this point leads to cooling effectiveness degradation and increased endwall heat flux. Endwall heat transfer does not scale well with one single parameter; increasing with increasing mass flux for the low density case but decreasing with increasing mass flux of high density coolant. From the results gathered, both coolant to mainstream density ratio and blowing ratio should be considered for accurate testing, analysis and prediction of purge jet cooling scheme performance.


Sign in / Sign up

Export Citation Format

Share Document