Experiment of Micro Cantilever Deflection by Thermal Bubble Growth in Liquid

2005 ◽  
Author(s):  
Heon J. Lee ◽  
Young-Soo Chang ◽  
Ho-Young Kim ◽  
Jong-Seob Ahn ◽  
Yoon-Pyo Lee

Micro cantilevers are significant structure for MEMS devices, such as bio-chips, sensors and STEM/AFM probes. The beam deflection and its characteristics have been studied for various purposes. In this study, expending bubbles from thermal surface exert force on micro-cantilever beam and causes deflection of the beam. Cantilevers were fabricated by classic MEMS fabrication method; photolithography and dry etching. The micro-beam was fabricated from <100> n-type silicon wafer and its thickness varies from 10 micron to 30micron with various geometry (length, width and tip shapes). The distance from thermal surface and cantilever beam is also significant variables for analysis of bubble-beam interaction. We observed beam deflection with respect to various bubble generation conditions (bubble size, contact area and generating frequency). Simple analysis of bubble-beam interaction were performed and compared with experimental results.

2012 ◽  
Vol 28 (1) ◽  
pp. 63-70 ◽  
Author(s):  
C.-C. Liu ◽  
S.-C. Yang ◽  
C.-K. Chen

ABSTRACTA hybrid differential transformation / finite difference scheme is used to analyze the complex nonlinear behavior of an electrostatically-actuated micro cantilever beam which high aspect ratios (length/width). The validity of the proposed method is confirmed by comparing the numerical results obtained for the tip displacement and pull-in voltage of the cantilever beam with the analytical and experimental results presented in the literature. The hybrid scheme is then applied to analyze both the steady-state and the dynamic deflection behavior of the cantilever beam as a function of the applied voltage. Overall, the results confirm that the hybrid method provides an accurate and computationally-efficient means of analyzing the complex nonlinear behavior of both the current micro cantilever beam system and other micro-scale electrostatically-actuated structures.


Wavelet Analysis, the improved version of Fourier transform is used to investigate and analyze the variant transient signals in time-frequency domain with higher accuracy and precision. Wavelet theory found its promising application in various fields not limited to Physics, Biology, Geophysics, Engineering and Medicine which becomes a common tool to analyze data. In this work we present new insight using wavelet transform to detect the cracks present in micro structured cantilever beam which found its application in various Micro Electro Mechanical System (MEMS) devices such as Transducers, Sensors, Switches, Actuators and Probes. Even a small change in microstructure will reflect in its dynamic output, so it is desired to locate the presence of cracks or damages over the device structure accurately. The modeling of such microstructure is designed and simulated using COMSOL Multiphysics. The displacement (Static Response) and stress of the beam for simulated damage were analyzed by wavelet transform using MATLAB. The obtained results highlights this method of analysis provides accurate location and effect of the crack over the Micro cantilever structure.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 414
Author(s):  
Marta Maria Kluba ◽  
Jian Li ◽  
Katja Parkkinen ◽  
Marcus Louwerse ◽  
Jaap Snijder ◽  
...  

Several Silicon on Insulator (SOI) wafer manufacturers are now offering products with customer-defined cavities etched in the handle wafer, which significantly simplifies the fabrication of MEMS devices such as pressure sensors. This paper presents a novel cavity buried oxide (BOX) SOI substrate (cavity-BOX) that contains a patterned BOX layer. The patterned BOX can form a buried microchannels network, or serve as a stop layer and a buried hard-etch mask, to accurately pattern the device layer while etching it from the backside of the wafer using the cleanroom microfabrication compatible tools and methods. The use of the cavity-BOX as a buried hard-etch mask is demonstrated by applying it for the fabrication of a deep brain stimulation (DBS) demonstrator. The demonstrator consists of a large flexible area and precisely defined 80 µm-thick silicon islands wrapped into a 1.4 mm diameter cylinder. With cavity-BOX, the process of thinning and separating the silicon islands was largely simplified and became more robust. This test case illustrates how cavity-BOX wafers can advance the fabrication of various MEMS devices, especially those with complex geometry and added functionality, by enabling more design freedom and easing the optimization of the fabrication process.


2007 ◽  
Vol 353-358 ◽  
pp. 2285-2288
Author(s):  
Fei Wang ◽  
Xue Zeng Zhao

Triangular cantilevers are usually used as small force sensors in the transverse direction. Analyzing the effect of a crack on transverse vibration of a triangular cantilever will be of value to users and designers of cantilever deflection force sensors. We present a method for prediction of location and size of a crack in a triangular cantilever beam based on measurement of the natural frequencies in this paper. The crack is modeled as a rotational spring. The beam is treated as two triangular beams connected by a rotational spring at the crack location. Formulae for representing the relation between natural frequencies and the crack details are presented. To detect crack details from experiment results, the plots of the crack stiffness versus its location for any three natural modes can be obtained through the relation equation, and the point of intersection of the three curves gives the crack location. The crack size is then calculated using the relation between its stiffness and size. An example to demonstrate the validity and accuracy of the method is presented.


2013 ◽  
Vol 300-301 ◽  
pp. 1309-1312
Author(s):  
Ji Long Su ◽  
Yan Jiao Zhang ◽  
Xing Feng Lian

The Ansys simulate software is utilized to analyze pull-in voltages and stresses of the fixed end of micro- cantilever beam with different thicknesses respectively. Based on the analysis of the electrostatic force at the pull-in voltage, the stress of fixed end of micro-beam and the maximum deflection are obtained. The relationship between the stress of fixed end and thickness is established. The results show that the mutation thickness of the stress and the pull-in voltage are at and respectively , it is consistent with the intrinsic size of the polycrystalline copper micro-beam.


2009 ◽  
Vol 3 (9) ◽  
Author(s):  
Othman Sidek ◽  
Muhamad Azman Miskam ◽  
H.M.T Khaleed ◽  
Mohd Fauzi Alias ◽  
Shukri Korakkottil Kunhi Mohd

Sign in / Sign up

Export Citation Format

Share Document