scholarly journals Optimal Design of Capacitive Micro Cantilever Beam Accelerometer

2009 ◽  
Vol 3 (9) ◽  
Author(s):  
Othman Sidek ◽  
Muhamad Azman Miskam ◽  
H.M.T Khaleed ◽  
Mohd Fauzi Alias ◽  
Shukri Korakkottil Kunhi Mohd
2013 ◽  
Vol 300-301 ◽  
pp. 1309-1312
Author(s):  
Ji Long Su ◽  
Yan Jiao Zhang ◽  
Xing Feng Lian

The Ansys simulate software is utilized to analyze pull-in voltages and stresses of the fixed end of micro- cantilever beam with different thicknesses respectively. Based on the analysis of the electrostatic force at the pull-in voltage, the stress of fixed end of micro-beam and the maximum deflection are obtained. The relationship between the stress of fixed end and thickness is established. The results show that the mutation thickness of the stress and the pull-in voltage are at and respectively , it is consistent with the intrinsic size of the polycrystalline copper micro-beam.


2010 ◽  
Vol 37 (7) ◽  
pp. 1784-1788 ◽  
Author(s):  
张晓晶 Zhang Xiaojing ◽  
张博明 Zhang Boming ◽  
陈吉安 Chen Ji′an ◽  
武湛君 Wu Zhanjun

Author(s):  
Atabak Sarrafan ◽  
Seiyed Hamid Zareh ◽  
Abolghassem Zabihollah ◽  
Amir Ali Khayyat

Measurement ◽  
2011 ◽  
Vol 44 (2) ◽  
pp. 454-465 ◽  
Author(s):  
Alireza Shooshtari ◽  
Hamed Kalhori ◽  
Amirhasan Masoodian

2005 ◽  
Author(s):  
Heon J. Lee ◽  
Young-Soo Chang ◽  
Ho-Young Kim ◽  
Jong-Seob Ahn ◽  
Yoon-Pyo Lee

Micro cantilevers are significant structure for MEMS devices, such as bio-chips, sensors and STEM/AFM probes. The beam deflection and its characteristics have been studied for various purposes. In this study, expending bubbles from thermal surface exert force on micro-cantilever beam and causes deflection of the beam. Cantilevers were fabricated by classic MEMS fabrication method; photolithography and dry etching. The micro-beam was fabricated from <100> n-type silicon wafer and its thickness varies from 10 micron to 30micron with various geometry (length, width and tip shapes). The distance from thermal surface and cantilever beam is also significant variables for analysis of bubble-beam interaction. We observed beam deflection with respect to various bubble generation conditions (bubble size, contact area and generating frequency). Simple analysis of bubble-beam interaction were performed and compared with experimental results.


Author(s):  
Ali Mallakin ◽  
Kazushi Inoue ◽  
Martin Guthold

This study is focused on testing “immuno-sensors” of micro-cantilever beams for the purpose of future design of high-throughout bioassays. We currently study the aberrant expression, deletion and mutation of hDMP1 (Human DMP1) in human lung cancer. Lung cancer is the leading cause of cancer deaths among men and women in North America. There are four major histological subtypes of human lung cancer: small-cell carcinoma (SCC), adenocarcinoma (AC), squamous cell carcinoma (SCC), and large-cell carcinoma (LCC). The hDMP1 locus is localized on chromosome 7q21, a region frequently deleted as part of the 7q-minus and monosomy 7 abnormalities of acute myeloid leukemia and myelodysplastic syndrome. Recent data demonstrate the critical role of Dmp1 in Ras-Raf-Arf signaling and cellular senescence. In order to study the interactions of hDMP1 gene product and selected tumor markers with BioMEMS devices, protein coating (Antibody) conduct on cantilevers with silicon nitride (SiNx) surfaces. Silicon nitride surface has the potential to provide a good interface for BioMEMS devices, due to enhanced adherence of substances on this surface. The cantilever biosensors coated with hDMP1 antibody were used for the detection of hDMP1 antigen, which is known to be a tumor suppressor protein. Results revealed that the changes in nano-mechanical forces provided sufficient differential torque to bend the cantilever beam upon injection of the antigen. Theoretical models have been developed for the prediction of the vibrational responses of atomic force microscope (AFM) cantilevers before and after antigen/antibody interaction. Exposure of the proteins to micro-cantilever (MC) resulted in un-reversible large stress. Static deflection of micro-cantilever appeared as a result of the surface stresses that are induced by changes upon antibody-antigen interaction. This indicated that the micro-cantilever approach is useful for detecting proteins and tumor markers, and this system is applicable as a model to design miniaturized biosensor systems. We also applied gene micro-array to identify unknown targets for hDMP1 and extend our observation of the complicated process of carcinogenesis.


Sign in / Sign up

Export Citation Format

Share Document