Nondestructive Detection of a Crack in a Triangular Cantilever Beam Based on Frequency Measurement

2007 ◽  
Vol 353-358 ◽  
pp. 2285-2288
Author(s):  
Fei Wang ◽  
Xue Zeng Zhao

Triangular cantilevers are usually used as small force sensors in the transverse direction. Analyzing the effect of a crack on transverse vibration of a triangular cantilever will be of value to users and designers of cantilever deflection force sensors. We present a method for prediction of location and size of a crack in a triangular cantilever beam based on measurement of the natural frequencies in this paper. The crack is modeled as a rotational spring. The beam is treated as two triangular beams connected by a rotational spring at the crack location. Formulae for representing the relation between natural frequencies and the crack details are presented. To detect crack details from experiment results, the plots of the crack stiffness versus its location for any three natural modes can be obtained through the relation equation, and the point of intersection of the three curves gives the crack location. The crack size is then calculated using the relation between its stiffness and size. An example to demonstrate the validity and accuracy of the method is presented.

2006 ◽  
Vol 324-325 ◽  
pp. 259-262
Author(s):  
Fei Wang ◽  
Xue Zeng Zhao ◽  
Jia Ying Chen

Triangular cantilevers are used as small force sensors. Prediction of location and size of multiple cracks from experimental results will be of value to users and designers of cantilever deflection force sensors. We extend a method for prediction of location and size of multiple cracks in rectangular cantilevers to deal with triangular cantilevers in this paper. The cracks are assumed to introduce local flexibility change and are modeled as rotational springs. The beam is divided into a number of segments, and each segment is associated with a damage index, which can be calculated through the relationship between the damage index and strain energy of each segment and the changes in the frequencies caused by the cracks. The location of cracks can be obtained with high accuracy with sufficient segment numbers. The size of a crack can be calculated through the relationship between the crack size and its stiffness, which can be obtained from the damage index related to the crack. The maximum error in prediction of the crack position in the case of double cracks is less than 15%, and it is less than 25% in prediction of the crack size.


Author(s):  
Hurang Hu ◽  
Akindeji Ojetola ◽  
Hamid Hamidzadeh

The vibration behavior of a cracked cantilever beam with a stationary roving mass and rotary inertia is investigated. The beam is modeled as an Euler-Bernoulli beam with rectangular cross section. The transverse deformation and axial deformation of the cracked beam are coupled through a stiffness matrix which is determined based on fracture mechanics principles. The analytical solutions are obtained for the natural frequencies and mode shapes of a cracked cantilever beam with a roving mass and rotary inertia. The effects of the location and depth of the crack, the location and the weight of the roving mass and rotary inertia on the natural frequencies and mode shapes of the beam are investigated. The numerical results show that the coupling between the transverse and axial vibrations for moderate values of crack depth and/or roving mass and rotary inertia is weak. Increasing the crack depth and the mass and rotary inertia will increase the coupling effect. Detection of the crack location using natural frequencies and mode shapes as parameters is also discussed.


2009 ◽  
Vol 12 (18) ◽  
pp. 37-45
Author(s):  
Hang Xuan Le ◽  
Luong Thi Hien Nguyen

This paper presents a method for identification of location and depth of a crack in a cantilever beam by means of a genetic algorithm based on the signs of crack identification are beams natural frequencies. The cracked element stiffness matrix is based on the theory that local flexibility goes up because of the appearance of cracks. Crack location and depth is identified by minimizing fitness function, which performs difference between natural frequencies calculated and measured. Results show that this method helps to make prediction with high accuracy and converging speed.


2018 ◽  
Vol 36 (1) ◽  
pp. 147-160 ◽  
Author(s):  
Xiaohua Song ◽  
Yiming Shao

Purpose Modelling methods can be helpful for understanding vibrations of beam structures including cracks, as well as for early detection of crack. This study aims to provide an analytical modelling approach for a cantilever beam considering a slant vertical crack along its height. However, previous uniform crack methods cannot be used for describing this case. The results from the analytical, finite element (FE) and experimental methods are compared to verify the vibration problem. Design/methodology/approach A massless rotational spring model is adopted to describe the crack. An extended method based on the calculation method for a uniform vertical edge crack is proposed to obtain the stiffness of the slant case. The beam is divided into a series of independent thin slices along the beam height. An Euler–Bernoulli beam model is applied to formulate each slice. The crack in each slice is considered as a uniform one. The transfer matrix method in the literature is used to obtain the beam vibration frequencies and mode shapes. Influences of crack location and sizes on the natural frequencies for the cantilever beam, as well as the mode shapes, are analysed. An established FE model and test results in the listed references are used to validate the developed method. Findings The numerical results show that the rotational stiffness at the cracked section and the natural frequencies of the beam decrease by increasing the crack sizes; the natural frequencies for the beam are greatly influenced by the crack sizes and location; the first natural frequency decreases with the distance from the beam fixed end to the crack location; the value of the first natural frequency reaches a minimum value when the crack is at the beam fixed end; the value of the second natural frequency is a minimum value when the crack is at the beam middle; and the value of the third natural frequency is a minimum value when the crack is at the beam free end. Saltation is observed in some mode shapes at the crack location, especially for larger crack depths; but, the mode shapes of the beam are slightly influenced by the vertical crack. Originality/value This study gives a useful analytical modelling method for free vibration analysis for the cantilever beam with a vertical crack, which can overcome the disadvantages of the previous uniform crack methods.


2012 ◽  
Vol 22 (1) ◽  
pp. 133-142 ◽  
Author(s):  
FB Sayyad ◽  
B Kumar ◽  
SA Khan

Nowadays, sophisticated structures and machinery parts are constructed by using metallic beams. Beams are widely used as structural element in civil, mechanical, naval, and aeronautical engineering. In structures and machinery, one undesirable phenomenon is crack initiation in which the impact cannot be seen overnight. Cracks develop gradually through time that lead finally to catastrophic failure. Therefore, crack should be monitored regularly with more care. This will lead to more effective preventive measure and ensure continuous operation of the structure and machine. Damage in structure alters its dynamic characteristics. The change is characterized by change in modal parameters, that is, modal frequencies. Thus, vibration technique can be suitably used as a nondestructive test for crack detection of component to be tested. Mostly modal frequencies are used for monitoring the crack because modal frequencies are properties of the whole structure component. In this paper, efforts are made to develop suitable methods that can serve as the basis to detection of crack location and crack size from measured axial vibration data. This method is used to address the inverse problem of assessing the crack location and crack size in various beam structure. The method is based on measurement of axial natural frequencies, which are global parameter and can be easily measured from any point on the structure and also indeed, the advantage in modeling complexity. In theoretical analysis, the relationship between the natural frequencies, crack location, and crack size has been developed. For identification of crack location and crack size, it was shown that data on the variation of the first two natural frequencies is sufficient. The experimental analysis is done to verify the practical applicability of the theoretical method developed.


1954 ◽  
Vol 21 (4) ◽  
pp. 365-370
Author(s):  
B. W. Andersen

Abstract Using the method published by Ritz in 1909, natural frequencies and corresponding node lines have been determined for two symmetric and two antisymmetric modes of vibration of isosceles triangular plates clamped at the base and having length-to-base ratios of 1, 2, 4, and 7 and for the two lowest modes of right triangular plates clamped along one leg and having ratios of the length of the free leg to that of the clamped one of 2, 4, and 7. A nonorthogonal co-ordinate system was used which gave constant limits of integration over the area of the triangle. The co-ordinate transformation made it necessary to modify the functions used by Ritz in approximating deflections and to consider cross products in the integration. The integration was done numerically, using tables compiled by Young and Felgar in 1949. To check the accuracy of results, a solution was obtained to the problem of a vibrating cantilever beam of uniform depth and triangular plan view. The results obtained were found to be consistent with those obtained for the plates by using an eight-term series to approximate the deflections of the symmetric plates (isosceles triangles) and a six-term series to approximate the deflections of the unsymmetric plates (right triangles).


Author(s):  
G. Meng ◽  
Eric J. Hahn

By considering time dependent terms as external excitation forces, the approximate dynamic response of a cracked horizontal rotor is analysed theoretically and numerically. The solution is good for small cracks and small vibrations in the stable operating range. For each steady state harmonic component the forward and backward whirl amplitudes, the shape and orientation of the elliptic orbit and the amplitude and phase of the response signals arc analysed, taking into account the effect of crack size, crack location, rotor speed and unbalance. It is found that the crack causes backward whirl, the amplitude of which increases with the crack. For a cracked rotor, the response orbit for each harmonic component is an ellipse, the shape and orientation of which depends on the crack size. The influence of the crack on the synchronous response of the system can be regarded as an additional unbalance whereupon, depending on the speed and the crack location, the response amplitude differs from that of the uncracked rotor. The nonsynchronous response provides evidence of crack in the sub-critical range, but is too small to be detected in the supercritical range. Possibilities for crack detection over the full speed range include the additional average (the constant) response component, the backward whirl of the response, the ellipticity of the orbit, the angle between the major axis and the vertical axis and the phase angle difference between vertical and horizontal vibration signals.


Author(s):  
Ratiba Fatma Ghachi ◽  
Wael Alnahhal ◽  
Osama Abdeljaber

This paper presents a beam structure of a new metamaterial-inspired dynamic vibration attenuation system. The proposed experimental research presents a designed cantilevered zigzag structure that can have natural frequencies orders of magnitude lower than a simple cantilever of the same scale. The proposed vibration attenuation system relies on the masses places on the zigzag structure thus changing the dynamic response of the system. The zigzag plates are integrated into the host structure namely a cantilever beam with openings, forming what is referred to here as a metastructure. Experimental frequency response function results are shown comparing the response of the structure to depending on the natural frequency of the zigzag structures. Results show that the distributed inserts in the system can split the peak response of the structure into two separate peaks rendering the peak frequency a low transmission frequency. These preliminary results provide a view of the potential of research work on active-controlled structures and nonlinear insert-structure interaction for vibration attenuation.


Sign in / Sign up

Export Citation Format

Share Document