Unsteady Simulation of Film Cooling Flow From an Inclined Cylindrical Jet

Author(s):  
Sung In Kim ◽  
Ibrahim G. Hassan ◽  
Xuezhi Zhang

Film cooling is extensively used to provide protection against the severe thermal environment in gas turbine engines. Most of the computational studies on film cooling flow have been done using steady Reynolds-Averaged Navier-Stokes (RANS) calculation procedures. However, the turbulent stress field is highly anisotropic in the wake region of the coolant jet, and the inherent unsteadiness of the coolant jet-crossflow interactions may have important implications in the cooling performance. In this paper, a computational investigation about the unsteady behavior of jet-in-crossflow applications is performed using DES. Detailed computation of a single row of 35 degree round holes on a flat plate has been obtained for a blowing ratio of 1.0 and a density ratio of 2.0. Firstly, time step size, grid resolution tests have been conducted. Comparison of the time-averaged DES prediction with the measured film cooling effectiveness shows that DES prediction is reasonable. From present simulations, the typical coherent vortical structures of the jet-in-crossflows can be seen. The unsteady physics of jet-in-crossflow interactions and a jet liftoff in film cooling flows have been explored.

Author(s):  
D. Giebert ◽  
M. Gritsch ◽  
A. Schulz ◽  
S. Wittig

A 3D Navier-Stokes code, together with the standard k-ϵ model with wall function approach, was used to investigate the flowfield in the vicinity of three different single scaled-up film-cooling holes. The hole geometries include a cylindrical hole, a hole with laterally expanded exit, and a hole with forward-laterally expanded exit. Comparisons of numerical results with detailed flowfield measurements of mean velocity and turbulent quantities are presented for a blowing ratio and density ratio of unity. Additionally, experimental data for different blowing ratios and a density ratio of about two are taken to perform validation of the code for adiabatic film-cooling effectiveness prediction. Results show that for both the round and the expanded hole geometries the code is able to capture all dominating flow structures of this jet in crossflow problem. However, discrepancies are found when comparing the flowfield inside the hole and at the hole exit. In particular, jet location at the hole exit differs significantly from measurement for the expanded hole geometries. For the adiabatic film-cooling effectiveness, it is shown that for round and expanded hole exits the intensity of the shear regions and the source of turbulence, respectively, have a strong influence on the predictive capability of the numerical code.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
S. S. Ravindran

Micropolar fluid model consists of Navier-Stokes equations and microrotational velocity equations describing the dynamics of flows in which microstructure of fluid is important. In this paper, we propose and analyze a decoupled time-stepping algorithm for the evolutionary micropolar flow. The proposed method requires solving only one uncoupled Navier-Stokes and one microrotation subphysics problem per time step. We derive optimal order error estimates in suitable norms without assuming any stability condition or time step size restriction.


2013 ◽  
Vol 13 (2) ◽  
pp. 386-410 ◽  
Author(s):  
Björn Sjögreen ◽  
Jeffrey W. Banks

AbstractWe consider multi-physics computations where the Navier-Stokes equations of compressible fluid flow on some parts of the computational domain are coupled to the equations of elasticity on other parts of the computational domain. The different subdomains are separated by well-defined interfaces. We consider time accurate computations resolving all time scales. For such computations, explicit time stepping is very efficient. We address the issue of discrete interface conditions between the two domains of different physics that do not lead to instability, or to a significant reduction of the stable time step size. Finding such interface conditions is non-trivial.We discretize the problem with high order centered difference approximations with summation by parts boundary closure. We derive L2 stable interface conditions for the linearized one dimensional discretized problem. Furthermore, we generalize the interface conditions to the full non-linear equations and numerically demonstrate their stable and accurate performance on a simple model problem. The energy stable interface conditions derived here through symmetrization of the equations contain the interface conditions derived through normal mode analysis by Banks and Sjögreen in [8] as a special case.


Author(s):  
S.-M. Kim ◽  
Youn J. Kim

Dispersion of coolant jets in a film cooling flow field is the result of a highly complex interaction between the film cooling jets and the mainstream. In order to investigate the effects of injection hole shapes and injection angle on the film cooling of turbine blade, four models having cylindrical and laterally-diffused holes were used. Three-dimensional Navier-Stokes code with k – ε model was used to compute the film cooling coefficient on the turbine blade. A multi-block grid system was generated that was nearly orthogonal to the various surfaces. Mainstream Reynolds number based on the cylinder diameter was 7.1 × 104. The turbulence intensity kept at 5.0% for all inlets. The effect of coolant flow rates was studied for blowing ratios of 0.9, 1.3 and 1.6, respectively. The temperature distribution of the cylindrical body surface is visualized by infrared thermography (IRT) and compared with computational results. Results show that the effects of injection hole shape and injection angle increase as the blowing ratio increases. As lateral injection angle increases, the adiabatic film cooling effectiveness is more broadly distributed and the area protected by coolant increases. The mass flow rate of the coolant through the first-row holes is less than that through the second-row holes due to the pressure distribution around the cylinder surface.


Author(s):  
Chao-Cheng Shiau ◽  
Izzet Sahin ◽  
Izhar Ullah ◽  
Je-Chin Han ◽  
Alexander V. Mirzamoghadam ◽  
...  

Abstract This work focuses on the parametric study of film cooling effectiveness on turbine vane endwall under various flow conditions. The experiments were performed in a five-vane annular sector cascade facility in a blowdown wind tunnel. The controlled exit isentropic Mach numbers were 0.7, 0.9, and 1.0, from high subsonic to transonic conditions. The freestream turbulence intensity is estimated to be 12%. Three coolant-to-mainstream mass flow ratios (MFR) in the range 0.75%, 1.0%, and 1.25% are studied. N2, CO2, and Argon/SF6 mixture were used to investigate the effects of density ratio (DR), ranging from 1.0, 1.5 to 2.0. There are 8 cylindrical holes on the endwall inside the passage. Pressure-sensitive paint (PSP) technique was used to capture the endwall pressure distribution for shock wave visualization and obtain the detailed film cooling effectiveness distributions. Both the high-fidelity effectiveness contour and the laterally (spanwise) averaged effectiveness were measured to quantify the parametric effect. This study will provide the gas turbine designer more insight on how the endwall film cooling effectiveness varies with different cooling flow conditions including shock wave through the endwall cross-flow passage.


Author(s):  
Sana Abd Alsalam ◽  
Bassam Jubran

Abstract This study introduces a novel and simple strategy; compound angle upstream sister holes (CAUSH) to increase film cooling performance of the cylindrical hole by combining two techniques: Sister holes; (two small round holes placed upstream the primary hole) and compound angle hole. Whereas the upstream sister holes were injected at several compound angles β = 0°, 45°, 75°, and 90°, while the main hole was injected to the streamwise direction at 35° on a flat plate. FLUENT-ANSYS code was used to perform the simulation by solving the 3D Reynolds Averaged Navier-Stokes Equations. The capability of three types of k-ε turbulence modeling combined with the enhanced wall treatment is investigated to predict the film cooling performance of sister holes. A detailed computational analysis of the cooling performance of the (CAUSH) and the flow field was done at a density ratio equal to two (D.R = 2) and four blowing ratios M = 0.25, 0.5, 1.0 and 1.5 to predict the centerline and laterally averaged film cooling performance. The centerline effectiveness results showed that the highest cooling performance from the examined (CAUSH) was obtained at β = 0°, 45°, and 90° for low and high blowing ratio, the highest laterally averaged film cooling performance was captured at β = 0° and 90° for all tested blowing ratios. Also, the results indicated that the upstream sister hole with 90° compound angle holes has the best overall film cooling effectiveness while the worst performance is attained at β = 75°.


Author(s):  
Eiji Sakai ◽  
Toshihiko Takahashi

To understand film cooling flow fields on a gas turbine blade, this paper reports a series of large-eddy simulations of an inclined round jet issuing into a crossflow. Simulations were performed at constant momentum ratio conditions, IR = 0.25, 0.5, 1.0 and Reynolds number, Re = 15,300, based on the crossflow velocity and the film cooling hole diameter. Density ratio, DR, is changed from 1.0 to 2.0, and effects of the density ratio on vortical structures around the film cooling hole exit and film cooling effectiveness are investigated. The results showed that the vortical structure of the ejected jet drastically changes with varying density ratio. When the density ratio is comparatively small, hairpin vortices are formed downstream of the hole exit. On the contrary, when the density ratio is comparatively high, the formation of the hairpin vortices is suppressed and jet shear layer vortices are formed on side edges of the cooling jet. The jet shear layer vortices conveys the coolant air to the wall surface. As a result, higher film cooling effectiveness is obtained at comparatively high density ratio conditions compared to comparatively low density ratio conditions. Additional simulations were performed to discuss a possibility of an improvement in the film cooling effectiveness by controlling the formation of the jet shear layer vortices.


2013 ◽  
Vol 3 (3) ◽  
pp. 247-262 ◽  
Author(s):  
Wei-Fan Hu ◽  
Ming-Chih Lai

AbstractWe develop an unconditionally energy stable immersed boundary method, and apply it to simulate 2D vesicle dynamics. We adopt a semi-implicit boundary forcing approach, where the stretching factor used in the forcing term can be computed from the derived evolutional equation. By using the projection method to solve the fluid equations, the pressure is decoupled and we have a symmetric positive definite system that can be solved efficiently. The method can be shown to be unconditionally stable, in the sense that the total energy is decreasing. A resulting modification benefits from this improved numerical stability, as the time step size can be significantly increased (the severe time step restriction in an explicit boundary forcing scheme is avoided). As an application, we use our scheme to simulate vesicle dynamics in Navier-Stokes flow.


Author(s):  
David L. Rigby ◽  
James D. Heidmann

Calculations are presented demonstrating the effect of placing a delta vortex generator downstream of a film cooling hole. The effects of blowing ratio, density ratio, and spanwise pitch are included in the study. Flow over a flat plate with film cooling holes oriented at a 30 degree angle was investigated. The Reynolds numbers based on the freestream velocity and the hole diameter was 11,300. The simulation was performed using the Glenn-HT code, a full three-dimensional Navier-Stokes solver using the Wilcox k-ω turbulence model. A structured multi-block grid was used with approximately one million cells, and average y+ values on the order of unity. Local and span averaged effectiveness are presented. Analysis and visualization of the flow are presented as well as a discussion on the mechanisms which contribute to the dramatic improvement in effectiveness. The results demonstrate that the delta vortex generator was able to annihilate the up-wash vortex pair produced by the film hole and produce a down-wash pair downstream.


Author(s):  
Samaneh Rouina ◽  
Silvia Ravelli ◽  
Giovanna Barigozzi

The present paper reports the results of an experimental and computational investigation of flat plate film cooling jets discharged from three fan-shaped holes. Measurements have been carried out at near unity density ratio in a low-speed wind tunnel, at low inlet turbulence intensity, with blowing ratios (BR) of 1 and 2. Aerodynamic results have shown that the jet stays attached to the flat plate. Thermal measurements have revealed that film cooling effectiveness decreases downstream of the holes, and BR equal to 1 provides the best trade-off between cooling air consumption and thermal protection. Consequently, BR = 1 was selected for assessing the performance of different turbulence models, implemented in STAR-CCM+, according with the steady Reynolds-averaged Navier–Stokes (RANS) approach. Predictions from realizable k-ε (RKE), shear stress transport k-ω (SST KW) and Reynolds stress model (RSM) were compared against measurements of laterally averaged and centerline adiabatic effectiveness, as well as off-the-wall velocity maps and profiles of stress components. RSM provided the most accurate predictions.


Sign in / Sign up

Export Citation Format

Share Document