Performance of Coaxial Ceiling-Mounted Personalized Ventilator for Comfort and Good Air Quality

Author(s):  
Nesreen Ghaddar ◽  
Kamel Ghali ◽  
Alain Makhoul

The aim of this work is to study the performance of a novel ceiling mounted coaxial personalized ventilator that can be used as an add on to the conventional ceiling diffuser in providing the thermal comfort and air quality needs to occupants in office building. A detailed 3D CFD model is coupled to a bioheat model to improve prediction of the microenvironment conditions around the human and the associated local and overall thermal comfort. Extensive simulations were performed to assess the effect of nozzle supply temperature and flow rate on the performance of the cooling system and on occupant comfort. The localized air conditioning system reduced the energy consumption by up to 34% when compared with conventional mixing systems providing the same level of thermal comfort. The proposed system also achieved high air quality in the occupant breathing zone with 45% ventilation effectiveness at fresh airflow rate of 10 L/s/person and attained 2°C between the occupant’s comfortable microenvironment and the rest of the space. In addition, the canopy of the angled diffuser was effective in reducing the migration of particles from the macroclimate to the microclimate region and low intake fractions of 1.90×10−4 were achieved.

2020 ◽  
Vol 38 (9A) ◽  
pp. 1257-1275
Author(s):  
Wisam M. Mareed ◽  
Hasanen M. Hussen

 Elevated CO2 rates in a building affect the health of the occupant. This paper deals with an experimental and numerical analysis conducted in a full-scale test room located in the Department of Mechanical Engineering at the University of Technology. The experiments and CFD were conducted for analyzing ventilation performance. It is a study on the effect of the discharge airflow rate of the ceiling type air-conditioner on ventilation performance in the lecture room with the mixing ventilation. Most obtained findings show that database and questionnaires analyzed prefer heights between 0.2 m to 1.2 m in the middle of an occupied zone and breathing zone height of between 0.75 m to 1.8 given in the literature surveyed. It is noticed the mismatch of internal conditions with thermal comfort, and indoor air quality recommended by [ASHRAE Standard 62, ANSI / ASHRAE Standard 55-2010]. CFD simulations have been carried to provide insights on the indoor air quality and comfort conditions throughout the classroom. Particle concentrations, thermal conditions, and modified ventilation system solutions are reported.


2014 ◽  
Vol 20 (7) ◽  
pp. 731-737 ◽  
Author(s):  
Fu-Jen Wang ◽  
Meng-Chieh Lee ◽  
Tong-Bou Chang ◽  
Yong-Sheng Chen ◽  
Ron-Chin Jung

Author(s):  
Douaa Al-Assaad ◽  
Nesreen Ghaddar ◽  
Kamel Ghali

This study optimizes the performance of a mixing ventilation system coupled with a personalized ventilator that emits a cool sinusoidal horizontal airflow jet towards the occupant upper body in order to achieve good overall thermal comfort and good air quality in the occupant breathing zone. A transient 3-D computational fluid dynamics (CFD) model coupled with a transient bio-heat model was deployed to predict airflow and temperature fields in the space and around the occupant as well as segmental skin temperature profiles for local and overall thermal sensation and comfort analysis. Simulations were performed using the CFD model to determine the airflow optimal supply frequency, mean flow rate and amplitude at room temperature of 25 °C and PV jet temperature of 22 °C. The system also showed, that when increasing frequency at fixed mean flow rate, thermal comfort increased from by 15.2 %. However when increasing mean flow rate at a fixed frequency, thermal comfort dropped at the low frequency of 0.3 Hz but remained acceptable at the higher frequency of 0.5 Hz.


2021 ◽  
Vol 246 ◽  
pp. 02005
Author(s):  
Eusébio Conceição ◽  
Mª Inês Conceição ◽  
João Gomes ◽  
Mª Manuela Lúcio ◽  
Hazim Awbi

The study presented in this work is performed in a virtual chamber, similar to an existing experimental chamber, with dimensions of 4.50×2.55×2.50 m3. The chamber, occupied with twelve virtual manikins, is equipped with six tables, twelve chairs, one exhaust system and one inlet system, based in confluents jets system. In the exhaust system are considered six air ducts, located above the head level, connected to the ceiling area. The inlet system, based in four vertical ducts, with 0.15 m diameter, located on the corners of the chamber, are equipped with consecutive holes, that promotes horizontal jets near the wall. The results demonstrate that when the airflow rate increases the air quality number increases, the thermal comfort number decreases and the ADI increases slightly. The predicted percentage of dissatisfied index values show that the thermal comfort level is acceptable, the dioxide carbon concentration values show that the indoor air quality is near the acceptable value and the Draught Risk is acceptable.


2021 ◽  
Vol 3 (2) ◽  
pp. 311-334
Author(s):  
Eusébio Conceição ◽  
João Gomes ◽  
Maria Manuela Lúcio ◽  
Maria Inês Conceição ◽  
Hazim Awbi

This paper presents a comparative study of a clean technology based on a DSF (double skin facade) used in winter conditions in the occupied buildings comfort improvement, namely the thermal comfort and air quality. The performance of a solar DSF system, the building’s thermal response, the internal thermal comfort and the internal air quality are evaluated. In this study, a DSF system, an air transport system and a HVAC (heating, ventilating and air conditioning) system based on mixing ventilation are used. The study considers a virtual chamber occupied by eight persons and equipped, in the outside environment, by three DSFs. A new horary pre-programming control methodology is developed and applied when the airflow rate is constant and the number of DSFs to operate is variable, when the airflow rate is variable and the number of DSFs to operate is constant and when the airflow rate is variable and the number of DSFs to operate is variable. This work uses a numerical model that simulates the integral building thermal behavior and an integral human thermal response. The internal air, provided by a mixing ventilating system, is warmed using the DSF system. The air temperature inside the DSF system and the virtual chamber, the thermal comfort level using the PMV index, the internal air quality using the carbon dioxide concentration and the uncomfortable hours are calculated for winter conditions. The results obtained show that the energy produced in the DSF, using solar radiation, guarantees acceptable thermal comfort conditions in the morning and in the afternoon. The indoor air quality obtained at the breathing level is acceptable. It is found that the airflow rate to be used is more decisive than the DSF operating methodology. However, when a solution is chosen that combines a ventilation rate with the number of DSF to operate, both variables throughout the day can obtain simultaneously better results for indoor air quality and thermal comfort according to the standards.


Morocco faces enormous climatic constraints. A large part of the national territory has a hot and dry climate, hence the importance of the climate aspect in the choice of an energy saving strategy. The use of reinterpreted, decontextualized, totally or partially vernacular architectural techniques and/or forms is visible at different levels in the Maghreb countries. The large-scale integration of this aspect seems to be ignored by the designers. The objective of this research is to evaluate the impact of the building orientation and vernacular architecture towards the occupant comfort, in order to meet its energy and comfort needs at a lower cost on one hand, and on the other hand, to design more efficient collective buildings from a thermal and energy point of view. The proposed methodology allows examining the thermal performances of a traditional building under the climatic conditions of the city of Rissani in order to naturally control comfort summer and winter, in addition to ensure a good thermal comfort without using any heating or cooling system. Finally, the simulations carried out lead to the identification of the optimal orientation that demonstrates an effective reduction in indoor temperatures and a decrease in the large daily fluctuations in these temperatures. The research focuses on the influence of the orientation of a building's facades in relation to the solar radiation and on providing the necessary thermal comfort.


2020 ◽  
pp. 65-74
Author(s):  
Eusébio Conceição ◽  
Mª Inês Conceição ◽  
Mª Manuela Lúcio ◽  
João Gomes ◽  
Hazim Awbi

In this study the numerical simulation of a Heating, Ventilating and Air Conditioning (HVAC) system, based in a personalized ventilation system, installed in an occupied office desk is made. The energy is produced in a Dual Skin Facades (DSF) system installed in the outdoor environment. The personalized ventilation system, placed above and below the writing area, installed in the desk central area. The office desk is occupied by eight virtual manikins. The numerical simulation is made in a winter typical day. This numerical study considers a coupling of a differential numerical model and an integral numerical model. The differential numerical model simulates the Computational Fluids Dynamics (CFD), evaluates the air velocity, air temperature, turbulence intensity and carbon dioxide concentration and calculates the indoor air quality. The integral numerical model simulates the Multi-Node Human Thermo-physiology Model, evaluates the tissue, blood and clothing temperatures distribution and calculates the thermal comfort level. The HVAC system, based on a DSF system, is built using three DSF unities, is equipped with internal venetian blinds. Each one, installed in a virtual chamber, is turned to south. The personalized ventilation system, made with eight upper and eight lower air terminal devices, is installed in the desk central area. On each table top two upper and two lower air terminal devices are considered in the left and right manikin area, while on each side of the table two upper and two lower air terminal devices are placed between the manikins. The office desk is occupied by eight virtual manikins, one sitting on each table top and three sitting on each side of the meeting table. In this numerical study, carried out in winter conditions, the occupants’ clothing level is 1 clo. In these situations a typical activity level of 1.2 met is considered. The evolution of indoor environmental conditions, in the DSF and in the office room, are calculated during a full winter typical day. The thermal comfort, the indoor air quality, the effectiveness for heat removal, the effectiveness for contaminant removal and the Air Distribution Index (ADI), are evaluated. In accordance with the obtained results the thermal comfort levels increase when the air renovation rate increases and the indoor air quality level increases when the air renovation rate increases. However, the ADI is quite constant when the inlet airflow rate increases, because the thermal comfort number decreases when the inlet airflow rate increases and the air quality number increases when the inlet airflow rate increases.


Sign in / Sign up

Export Citation Format

Share Document