A Numerical Study of a Single Unsteady Laminar Slot Jet in a Confined Structure

Author(s):  
Omidreza Ghaffari ◽  
M. Baris Dogruoz ◽  
Mehmet Arik

With the inherit advantages of air cooling, jet impingement can produce a factor of two or higher heat transfer than conventional fan flow over bodies. Therefore, impinging jets can solve a number of electronics thermal issues. Those jets produce complex flow and thermal structures leading to non-uniform and non-monotonic profiles on target surfaces. A numerical study is performed to investigate the flow and heat transfer characteristics of an unsteady laminar impinging jet emanated from a single high-aspect ratio rectangular (slot) nozzle in a confined arrangement. The spacing between the target plate and the nozzle is such that the jet would still be in its potential core length as it was in a free axial jet. Following the initial transients, flow and heat transfer parameters still vary considerably in time that the instantaneous and time-averaged values of surface profiles are not identical. Instantaneous surface pressure distributions exhibit that the stagnation point translates periodically around the initial jet-symmetry line and the surface profiles demonstrate off-center (non-stagnation point) peaks.

2021 ◽  
Vol 11 (15) ◽  
pp. 7167
Author(s):  
Liang Xu ◽  
Xu Zhao ◽  
Lei Xi ◽  
Yonghao Ma ◽  
Jianmin Gao ◽  
...  

Swirling impinging jet (SIJ) is considered as an effective means to achieve uniform cooling at high heat transfer rates, and the complex flow structure and its mechanism of enhancing heat transfer have attracted much attention in recent years. The large eddy simulation (LES) technique is employed to analyze the flow fields of swirling and non-swirling impinging jet emanating from a hole with four spiral and straight grooves, respectively, at a relatively high Reynolds number (Re) of 16,000 and a small jet spacing of H/D = 2 on a concave surface with uniform heat flux. Firstly, this work analyzes two different sub-grid stress models, and LES with the wall-adapting local eddy-viscosity model (WALEM) is established for accurately predicting flow and heat transfer performance of SIJ on a flat surface. The complex flow field structures, spectral characteristics, time-averaged flow characteristics and heat transfer on the target surface for the swirling and non-swirling impinging jets are compared in detail using the established method. The results show that small-scale recirculation vortices near the wall change the nearby flow into an unstable microwave state, resulting in small-scale fluctuation of the local Nusselt number (Nu) of the wall. There is a stable recirculation vortex at the stagnation point of the target surface, and the axial and radial fluctuating speeds are consistent with the fluctuating wall temperature. With the increase in the radial radius away from the stagnation point, the main frequency of the fluctuation of wall temperature coincides with the main frequency of the fluctuation of radial fluctuating velocity at x/D = 0.5. Compared with 0° straight hole, 45° spiral hole has a larger fluctuating speed because of speed deflection, resulting in a larger turbulence intensity and a stronger air transport capacity. The heat transfer intensity of the 45° spiral hole on the target surface is slightly improved within 5–10%.


Author(s):  
Tarek M. Abdel-Salam

This study presents results for flow and heat transfer characteristics of two-dimensional rectangular impinging jets and three-dimensional circular impinging jets. Flow geometries under consideration are single and multiple impinging jets issued from a plane wall. Both confined and unconfined configurations are simulated. Effects of Reynolds number and the distance between the jets are investigated. Results are obtained with a finite volume computational fluid dynamics (CFD) code. Structured grids are used in all cases of the present study. Turbulence is treated with a two equation k-ε model. Different jet velocities have been examined corresponding to Reynolds numbers of 5,000 to 20,000. Results of the three-dimensional cases show that Reynolds number has no effect on the velocity distribution of the center jet. Results of both two-dimensional and three-dimensional cases show that Reynolds number highly affects the heat transfer and values of the Nusselt number. The maximum Nusselt number was always found at the stagnation point of the center jet.


2021 ◽  
Vol 143 (3) ◽  
Author(s):  
Prabhakar Subrahmanyam ◽  
B. K. Gnanavel

Abstract Detailed heat transfer distributions of multiple microscaled tapered jets orthogonally impinging on the surface of a high-power density silicon wall is presented. The tapered jets issued from two different impingement setup are studied—(a) single circular nozzle and (b) dual circular nozzles. Jets are issued from the inlet(s) at four different Reynolds numbers {Re = 8000, 12,000, 16,000, 20,000}. The spacing between the tapered nozzle jets and the bare die silicon wall (z/d) is adjusted to be 4, 8, 12, and 16 jet nozzle diameters away from impinging influence. The impact of varying the nozzle to the silicon wall (z/d) standoff spacing up to 16 nozzle jet diameters and its effects on flow fields on the surface of the silicon, specifically the entrainment pattern on the silicon surface, is presented. Heat transfer characteristics of impinging jets on the hot silicon wall is investigated by means of large eddy simulations (LES) at a Reynolds of 20,000 on each of the four z/d spacing and compared against its equivalent Reynolds-averaged Navier–Stokes (RANS) cases. Highest heat transfer coefficients are obtained for the dual inlet system. A demarcation boundary region connecting all the microvortices between impinging jets is prominently visible at smaller z/d spacing—the region where the target silicon wall is within the sphere of influence of the potential core of the jet. This research focuses on the underlying physics of multiple tapered nozzles jet impingement issued from single and dual nozzles and its impact on turbulence, heat transfer distributions, entrainment, and other pertinent flow-field characteristics.


2009 ◽  
Vol 131 (9) ◽  
Author(s):  
Y. Q. Zu ◽  
Y. Y. Yan ◽  
J. Maltson

In this paper, the heat transfer characteristics of a circular air jet vertically impinging on a flat plate near to the nozzle (H/d=1–6, where H is the nozzle-to-target spacing and d is the diameter of the jet) are numerically analyzed. The relative performance of seven turbulent models for predicting this type of flow and heat transfer is investigated by comparing the numerical results with available benchmark experimental data. It is found that the shear-stress transport (SST) k−ω model and the large Eddy simulation (LES) time-variant model can give better predictions for the performance of fluid flow and heat transfer; especially, the SST k−ω model should be the best compromise between computational cost and accuracy. In addition, using the SST k−ω model, the effects of jet Reynolds number (Re), jet plate length-to-jet diameter ratio (L/d), target spacing-to-jet diameter ratio (H/d), and jet plate width-to-jet diameter ratio (W/d) on the local Nusselt number (Nu) of the target plate are examined; a correlation for the stagnation Nu is presented.


Author(s):  
H. H. Cho ◽  
C. H. Lee ◽  
Y. S. Kim

The present study is conducted experimentally to obtain heat transfer characteristics on the impingement surface for controlled jets. Counterflowing or coflowing stream around the jet periphery is used to control the jet at the nozzle lip. The characteristics of flow and heat transfer are studied on two different jet nozzle exit flow conditions, including a fully developed turbulent tube flow and an uniform velocity distribution flow. The experiments are carried out for nozzle-to-plate distances of 2 to 8 nozzle diameters, jet Reynolds numbers in the range of 10,000 to 70,000, and main and secondary flow velocity ratios, R = ΔU/2Ū, of 0.45 to 1.86. The secondary counter- and co-flows change the flow instability conditions in the shear layers resulting in changes of heat transfer on the impingement surface. For secondary counterflows, heat transfer on the impingement surface is changed little for the small nozzle-to-plate distance of H/D = 2, but is enhanced on the stagnation region with reduction on the secondary peak region for H/D = 4. Augmentation of heat transfer on the stagnation region increases with increasing jet Reynolds numbers. For secondary coflows, the jet potential core extends far downstream due to inhibited development of the vortices, but the heat transfer is reduced significantly and the secondary peak appears downstream with increasing blowing rates.


Author(s):  
G. Arvind Rao ◽  
Myra Kitron-Belinkov ◽  
Yeshayahou Levy

Jet impingement is known to provide higher heat transfer coefficients as compared to other conventional modes of single phase heat transfer. Jet impingement has been a subject of research for a long time. Single jets have been studied extensively for their heat transfer and flow characteristics. However, for practical usage, multiple jets (in the form of arrays) have to be used for increasing the total heat transfer over a given area. Most of the research on multiple impinging jets have focused on evaluating heat transfer correlations for such arrays in the turbulent regime (Re >2500). The focus of the present paper is on experimental investigation of a large array of impinging jets in the low Reynolds number regime (<1000) and subsequently numerically modeling the same array by using existing Computational Fluid Dynamics tools in order to study the physical phenomena within such a complex system. Different turbulence models were used for modeling the fluid flow within these impinging jets and it was found that the SST k-ω model is the most suitable. Results obtained from CFD analysis are in reasonable agreement with experimental values. It was observed that CFD simulations over predicted the Nusselt number and pressure drop when compared to the experimentally obtained values. It was also observed that the decrease in Nusselt number along the streamwise direction of the array was not monotonic. This could be due to the complex flow field resulting from interaction between the crossflow and the impinging jets in the wall jet region. It is anticipated that results obtained from the present work will provide greater insight into the flow behavior and the heat transfer mechanism occurring in multiple impinging jets.


Author(s):  
Ganesh Subbuswamy ◽  
Xianchang Li

Extended surfaces (fins) and impinging jets have been used to enhance heat transfer in many applications. In electronic thermal management, heat sinks can be designed to take advantage of the combined effect of fins and jet impingement such as jets impinging on an array of pin fins or plate fins. Significant studies have been focused on the thermal resistance, pressure drop, and the parametric effect of Reynolds number, fin thickness, density, and height. To further improve the heat sink performance, ribs/turbulators, which are widely employed in internal cooling of gas turbine blades, can be integrated into the plate fins, especially close to the surface area with low heat transfer coefficient. Numerical study is performed in this paper to examine the flow and heat transfer behavior of plate fin heat sinks cooled by an impinging jet and enhanced by the ribs. The height and shape of the turbulators are investigated to achieve the best performance. Parametric studies also include the flow Reynolds number and the spacing between the ribs. Heat transfer mechanism is explored for the confined turbulence jet with and without turbulators. It is expected that the rib enhancement can lead to a more cost-effective heat sink for cooling of electronic components. Further enhancement and optimization are discussed in this paper.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1589
Author(s):  
Yuxuan Ji ◽  
Kaixiang Xing ◽  
Kefa Cen ◽  
Mingjiang Ni ◽  
Haoran Xu ◽  
...  

Printed circuit heat exchanger (PCHE) is a promising regenerative device in the sCO2 power cycle, with the advantages of a large specific surface area and compact structure. Its tiny and complex flow channel structure brings enhanced heat transfer performance, while increasing pressure drop losses. It is, thus, important to balance heat transfer and flow resistance performances with the consideration of sCO2 as the working agent. Herein, three-dimensional models are built with a full consideration of fluid flow and heat transfer fields. A trapezoidal channel is developed and its thermal–hydraulic performances are compared with the straight, the S-shape, and the zigzag structures. Nusselt numbers and the Fanning friction factors are analyzed with respect to the changes in Reynolds numbers and structure geometric parameters. A sandwiched structure that couples two hot channels with one cold channel is further designed to match the heat transfer capacity and the velocity of sCO2 flows between different sides. Through this novel design, we can reduce the pressure drop by 75% and increase the regenerative efficiency by 5%. This work can serve as a solid reference for the design and applications of PCHEs.


Sign in / Sign up

Export Citation Format

Share Document