Development of a Fast Fluid Dynamics Model Based on PISO Algorithm for Simulating Indoor Airflow

Author(s):  
Sibo Li ◽  
Hongtao Qiao

Abstract Real-time or faster-than-real-time flow simulation is crucial for studying airflow and heat transfer in buildings, such as building design, building emergency management and building energy performance evaluation. Computational Fluid Dynamics (CFD) with Pressure Implicit with Splitting of Operator (PISO) or Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm is accurate but requires great computational resources. Fast Fluid Dynamics (FFD) can reduce the computational effort but generally lack prediction accuracy due to simplification. This study developed a fast computational method based on FFD in combination with the PISO algorithm. Boussinesq approximation is adopted for simulating buoyancy effect. The proposed solver is tested in a two-dimensional case and a three-dimensional case with experimental data. The predicted results have good agreement with the experimental results. In the two test cases, the proposed solver generates lower Root Mean Square Error (RMSE) compared to the FFD and at the same time, the proposed method reduces computational cost by a factor of 10 and 13 in the two cases compared to CFD.

2015 ◽  
Vol 8 (4) ◽  
pp. 405-414 ◽  
Author(s):  
M. Amirul Islam Khan ◽  
Nicolas Delbosc ◽  
Catherine J. Noakes ◽  
Jonathan Summers

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 164
Author(s):  
Marek Wójcikowski

This paper presents an algorithm for real-time detection of the heart rate measured on a person’s wrist using a wearable device with a photoplethysmographic (PPG) sensor and accelerometer. The proposed algorithm consists of an appropriately trained LSTM network and the Time-Domain Heart Rate (TDHR) algorithm for peak detection in the PPG waveform. The Long Short-Term Memory (LSTM) network uses the signals from the accelerometer to improve the shape of the PPG input signal in a time domain that is distorted by body movements. Multiple variants of the LSTM network have been evaluated, including taking their complexity and computational cost into consideration. Adding the LSTM network caused additional computational effort, but the performance results of the whole algorithm are much better, outperforming the other algorithms from the literature.


2020 ◽  
Vol 2020 (14) ◽  
pp. 378-1-378-7
Author(s):  
Tyler Nuanes ◽  
Matt Elsey ◽  
Radek Grzeszczuk ◽  
John Paul Shen

We present a high-quality sky segmentation model for depth refinement and investigate residual architecture performance to inform optimally shrinking the network. We describe a model that runs in near real-time on mobile device, present a new, highquality dataset, and detail a unique weighing to trade off false positives and false negatives in binary classifiers. We show how the optimizations improve bokeh rendering by correcting stereo depth misprediction in sky regions. We detail techniques used to preserve edges, reject false positives, and ensure generalization to the diversity of sky scenes. Finally, we present a compact model and compare performance of four popular residual architectures (ShuffleNet, MobileNetV2, Resnet-101, and Resnet-34-like) at constant computational cost.


2021 ◽  
Vol 13 (9) ◽  
pp. 5201
Author(s):  
Kittisak Lohwanitchai ◽  
Daranee Jareemit

The concept of a zero energy building is a significant sustainable strategy to reduce greenhouse gas emissions. The challenges of zero energy building (ZEB) achievement in Thailand are that the design approach to reach ZEB in office buildings is unclear and inconsistent. In addition, its implementation requires a relatively high investment cost. This study proposes a guideline for cost-optimal design to achieve the ZEB for three representative six-story office buildings in hot and humid Thailand. The energy simulations of envelope designs incorporating high-efficiency systems are carried out using eQuest and daylighting simulation using DIALux evo. The final energy consumptions meet the national ZEB target but are higher than the rooftop PV generation. To reduce such an energy gap, the ratios of building height to width are proposed. The cost-benefit of investment in ZEB projects provides IRRs ranging from 10.73 to 13.85%, with payback periods of 7.2 to 8.5 years. The energy savings from the proposed designs account for 79.2 to 81.6% of the on-site energy use. The investment of high-performance glazed-windows in the small office buildings is unprofitable (NPVs = −14.77–−46.01). These research results could help architects and engineers identify the influential parameters and significant considerations for the ZEB design. Strategies and technical support to improve energy performance in large and mid-rise buildings towards ZEB goals associated with the high investment cost need future investigations.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1080
Author(s):  
Mamdooh Alwetaishi ◽  
Omrane Benjeddou

The concern regarding local responsive building design has gained more attention globally as of late. This is due to the issue of the rapid increase in energy consumption in buildings for the purpose of heating and cooling. This has become a crucial issue in educational buildings and especially in schools. The major issue in school buildings in Saudi Arabia is that they are a form of prototype school building design (PSBD). As a result, if there is any concern in the design stage and in relation to the selection of building materials, this will spread throughout the region. In addition to that, the design is repeated regardless of the climate variation within the kingdom of Saudi Arabia. This research will focus on the influence of the window to wall ratio on the energy load in various orientations and different climatic regions. The research will use the energy computer tool TAS Environmental Design Solution Limited (EDSL) to calculate the energy load as well as solar gain. During the visit to the sample schools, a globe thermometer will be used to monitor the globe temperature in the classrooms. This research introduces a framework to assist architects and engineers in selecting the proper window to wall ratio (WWR) in each direction within the same building based on adequate natural light with a minimum reliance on energy load. For ultimate WWR for energy performance and daylight, the WWR should range from 20% to 30%, depending on orientation, in order to provide the optimal daylight factor combined with building energy efficiency. This ratio can be slightly greater in higher altitude locations.


2020 ◽  
Author(s):  
R. Andreas Burgos S. ◽  
Lars Wollebaek ◽  
Vegard Elverhaug ◽  
Zongchang Yang ◽  
Hatef Khaledi
Keyword(s):  

2016 ◽  
Vol 195 (4S) ◽  
Author(s):  
Shigehiro Soh ◽  
Toshiyuki Iwahata ◽  
Keisuke Suzuki ◽  
Tomohiro Kobayashi ◽  
Shin Takeshi ◽  
...  

Author(s):  
Mahdi Esmaily Moghadam ◽  
Yuri Bazilevs ◽  
Tain-Yen Hsia ◽  
Alison Marsden

A closed-loop lumped parameter network (LPN) coupled to a 3D domain is a powerful tool that can be used to model the global dynamics of the circulatory system. Coupling a 0D LPN to a 3D CFD domain is a numerically challenging problem, often associated with instabilities, extra computational cost, and loss of modularity. A computationally efficient finite element framework has been recently proposed that achieves numerical stability without sacrificing modularity [1]. This type of coupling introduces new challenges in the linear algebraic equation solver (LS), producing an strong coupling between flow and pressure that leads to an ill-conditioned tangent matrix. In this paper we exploit this strong coupling to obtain a novel and efficient algorithm for the linear solver (LS). We illustrate the efficiency of this method on several large-scale cardiovascular blood flow simulation problems.


Sign in / Sign up

Export Citation Format

Share Document