Diesel Particulate Filter Retrofit of a 1500 kW Multi-Engine Genset Locomotive

Author(s):  
John Hedrick ◽  
Steve Fritz ◽  
Kathy Plunkett

This paper documents the initial test results of a locomotive diesel particulate filter (DPF) retrofit project. The locomotive used for this project was BNSF1284, a 1,566 kW National Railway Equipment Company (NREC) model 3GS21B, originally manufactured in April, 2008, and designed to be an Ultra-Low Emissions Locomotive (ULEL). This genset switcher locomotive uses three Cummins QSK19 Cummins 522 kW diesel-engine driven generator sets (Genset 1, 2, and 3) to provide the power needed to drive the traction motors. The GT Exhaust Diesel Particulate Filter (DPF) retrofit system, installed on BNSF1284, uses catalyzed DPF elements. The DPF, and its catalyzed coating, offered significant hydrocarbons (HC), carbon monoxide (CO), and particulate (PM) emissions reduction. Additionally, the catalyzed coating should allow the diesel particulate filters to passively regenerate at moderate exhaust temperatures, thus keeping the engine back pressure within allowable limits of the manufacture. The GT Exhaust DPF’s were installed in place of the standard mufflers on each of the three engines. The GT Exhaust DPF’s are roughly the same size as the stock muffler. The only locomotive modification needed to install the GT Exhaust DPF’s was to the muffler mounting platform, directly above the engine, where the exhaust pipe opening needed to be enlarged. There are no external modifications to the locomotive car body needed to install the GT Exhaust DPF’s. After installation of the DPF’s, they were degreened by operating the engines at rated power for 20 hours. After degreening testing was performed according to Title 40 of the U. S. Code of Federal Regulations (CFR), Part 92, Subpart B. The addition of the DPF reduced the PM emissions to 0.016 g/kW-hr or 60 percent below the locomotive Tier 4 PM limits. BNSF1284 was returned to revenue service in Richmond, California in March 2012, where the DPF performance will be tracked for 3,000 hours of operation as part of a California Air Resources Board (CARB) verification program.

2019 ◽  
pp. 146808741987457 ◽  
Author(s):  
Jun Zhang ◽  
Yanfei Li ◽  
Victor W Wong ◽  
Shijin Shuai ◽  
Jinzhu Qi ◽  
...  

Diesel particulate filters are indispensable for diesel engines to meet the increasingly stringent emission regulations. A large amount of ash would accumulate in the diesel particulate filter over time, which would significantly affect the diesel particulate filter performance. In this work, the lubricant-derived ash effects on diesel particulate filter pressure drop, diesel particulate filter filtration performance, diesel particulate filter temperature field during active regeneration, and diesel particulate filter downstream emissions during active regeneration were studied on an engine test bench. The test results show that the ash accumulated in the diesel particulate filter would decrease the diesel particulate filter pressure drop due to the “membrane effect” when the diesel particulate filter ash loading is lower than about 10 g/L, beyond which the diesel particulate filter pressure drop would be increased due to the reduction of diesel particulate filter effective volume. The ash loaded in the diesel particulate filter could significantly improve the diesel particulate filter filtration efficiency because it would fill the pores of diesel particulate filter wall. The diesel particulate filter peak temperature during active regeneration is consistent with the diesel particulate filter initial actual soot loading density prior to regeneration at various diesel particulate filter ash loading levels, while the diesel particulate filter maximum temperature gradient would increase with the diesel particulate filter ash loading increase, whether the diesel particulate filter is regenerated at the same soot loading level or the same diesel particulate filter pressure drop level. The ash accumulation in the diesel particulate filter shows little effects on diesel particulate filter downstream CO, total hydrocarbons, N2O emissions, and NO2/NO x ratio during active regeneration. However, a small amount of SO2 emissions was observed when the diesel particulate filter ash loading is higher than 10 g/L. The ash accumulated in the diesel particulate filter would increase the diesel particulate filter downstream sub-23 nm particle emissions but decrease larger particle emissions during active regeneration.


2016 ◽  
Author(s):  
Devin R. Berg

Diesel particulate filters are designed to reduce themass emissions of diesel particulate matter and havebeen proven to be effective in this respect. Not much isknown, however, about their effects on otherunregulated chemical species. This study utilized sourcedilution sampling techniques to evaluate the effects of acatalyzed diesel particulate filter on a wide spectrum ofchemical emissions from a heavy-duty diesel engine.The species analyzed included both criteria andunregulated compounds such as particulate matter(PM), carbon monoxide (CO), hydrocarbons (HC),inorganic ions, trace metallic compounds, elemental andorganic carbon (EC and OC), polycyclic aromatichydrocarbons (PAHs), and other organic compounds.Results showed a significant reduction for the emissionsof PM mass, CO, HC, metals, EC, OC, and PAHs.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5128
Author(s):  
Wojciech Jarosiński ◽  
Piotr Wiśniowski

The article presents the possibility of verifying the efficiency of a diesel particulate filter (DPF) with the use of particle counters using two different measurement methods. The tests were carried out at a vehicle inspection station using a condensation particle counter (CPC) and a diffusion charger (DC). This article presents the results of measurements of 50 vehicles. Removal of the diesel particulate filter from a vehicle is prohibited but is a known phenomenon throughout the EU. The task of periodic technical inspections is to eliminate vehicles that are inoperative and do not meet the environmental protection requirements. However, to date, European vehicle inspection stations do not have an effective tool to counter tampering with diesel particulate filters. The performed measurements allowed us to prove the hypothesis that both methods of measurement allow the effective confirmation of the presence of DPF in a vehicle during the periodic technical inspection of the vehicle and verification of the quality of its operation. In addition, the advantages and disadvantages of both measurement methods were assessed.


Author(s):  
O. Chiavola ◽  
G. Falcucci

The present work treats the problems and phenomena related to the soot deposition inside a modern Diesel particulate filter, in order to realize a numerical model able to analyze how particulate matter lays down and grows over the porous walls inside a non-catalyzed diesel particulate filter. The geometry of a commercial device has been imported in a 3D CFD code and the phenomena related to the fluid while it passes through the porous media of the filter have been viewed upon with an unsteady approach for different values of engine power and torque. The obtained velocity fields have been used to calculate the profile of deposited soot after a chosen operation period and the geometry of the filter has been then refreshed for the subsequent quasi-steady simulation. The backpressure due to the growing of the soot layer has been calculated.


Author(s):  
John Hedrick ◽  
Steve Fritz ◽  
Michael Jaczola ◽  
Harold Holmes

One of the California Air Resources Board’s highest priorities is to reduce NOx and PM emissions from diesel engines. To support this goal, this project evaluated two different brands of experimental diesel particulate filters (DPF’s) on a 1,500 kW GenSet Switcher locomotives to determine their efficiency at reducing PM for this application. The locomotive used for these tests was UPY2737, an NREC Model 3GS-21B Ultra Low Emissions Locomotive (ULEL) originally manufactured in 2007. This is one of 70 of this type of locomotive operating in California. These locomotives are powered by three EPA Tier 3 nonroad, 522 kW, diesel engine driven generator sets. Upon receipt, the locomotive was baseline emission tested and the results were provided to two DPF system suppliers. Experimental DPF’s provided by these suppliers were then installed and tested using only one of the three engine-gen sets. The experimental DPF provided by Supplier “A” reduced PM emissions by 92 percent from baseline switch cycle levels, or 77 percent below the US EPA Tier 4 locomotive PM emission limit. Additionally this system essentially did not change the NOX emissions and cycle weighted fuel consumption from the engine. The experimental DPF provided by Supplier “B” also showed no significant change in the switch cycle weighted fuel consumption and NOX emission and reduced the PM emissions by 88 percent, which is 63 percent below the Tier 4 locomotive PM emissions limit. Based on these successful screening test results, projects are underway to equip all three engines with production intent retrofit DPF systems on two revenue service locomotives, one for each of the two DPF suppliers.


2017 ◽  
Vol 18 (10) ◽  
pp. 29-33
Author(s):  
Marta Wójcik

Stringent environmental requirements caused the use of special technical solutions from motor manufactures. These innovations aim to the reduction of gases emission. From 2000, vehicles with diesel engines, including buses, are equipped with the Diesel Particulate Filter (DPF). The basic principle of the DPF filter relays on the oxidation of carbon and hydrocarbons to harmless compounds: water, air and carbon dioxide. Due to the content of platinum and other precious metals, the price of diesel particulate filters is even several tens of thousands PLN. From the economical point of view, metals recovery from end of live buses is essential. Additionally, recycling of used diesel particulates filters is very important for materials management. This article presents the recycling methods of DPF filters from end of live vehicles, including buses. The recovery of platinum and other metals from aforementioned filters is an important step toward the reduction of the amount of waste. Additionally, the recycling of diesel particulate filters influences the protection of metals resources in the world.


1993 ◽  
Author(s):  
Hiroshi Okazoe ◽  
Tatsuo Yamada ◽  
Keiichi Niimura ◽  
Yoshito Watanabe ◽  
Atsushi Itoh ◽  
...  

2018 ◽  
Author(s):  
Z. Gerald Liu ◽  
Devin R. Berg ◽  
Thaddeus A. Swor ◽  
James J. Schauer‡

Two methods, diesel particulate filter (DPF) and selective catalytic reduction (SCR) systems, for controlling diesel emissions have become widely used, either independently or together, for meeting increasingly stringent emissions regulations world-wide. Each of these systems is designed for the reduction of primary pollutant emissions including particulate matter (PM) for the DPF and nitrogen oxides (NOx) for the SCR. However, there have been growing concerns regarding the secondary reactions that these aftertreatment systems may promote involving unregulated species emissions. This study was performed to gain an understanding of the effects that these aftertreatment systems may have on the emission levels of a wide spectrum of chemical species found in diesel engine exhaust. Samples were extracted using a source dilution sampling system designed to collect exhaust samples representative of real-world emissions. Testing was conducted on a heavy-duty diesel engine with no aftertreatment devices to establish a baseline measurement and also on the same engine equipped first with a DPF system and then a SCR system. Each of the samples was analyzed for a wide variety of chemical species, including elemental and organic carbon, metals, ions, n-alkanes, aldehydes, and polycyclic aromatic hydrocarbons, in addition to the primary pollutants, due to the potential risks they pose to the environment and public health. The results show that the DPF and SCR systems were capable of substantially reducing PM and NOx emissions, respectively. Further, each of the systems significantly reduced the emission levels of the unregulated chemical species, while the notable formation of new chemical species was not observed. It is expected that a combination of the two systems in some future engine applications would reduce both primary and secondary emissions significantly.


Sign in / Sign up

Export Citation Format

Share Document