Interactions of Piston Ring Pack With Coated Cylinder Liners of Heavy Duty Diesel Engines

Author(s):  
Fabio Araujo ◽  
Luiz de Sá Filho ◽  
Jason Bieneman ◽  
Eduardo Nocera ◽  
Edney Deschauer Rejowski

The heavy duty diesel (HDD) engine market continues to strive for improvements in engine efficiency and durability which places ever increasing development demands on the power cylinder unit. One of the methods being developed to help meet these demands is coated cylinder bore technology. By applying a coating to the inner diameter surface of a cylinder liner the wear on the liner can be significantly reduced. The reduction in liner wear is not however the only advantage that this technology can offer. Liner coatings can also offer corrosion protection, reductions in wear on the running surface of the rings, improved scuff resistance, and enable improvements in the efficiency of the engine. New piston ring technologies will be valuable in maximizing these advantages and their contribution will be detailed. The system must be properly designed to take full advantage of all of these opportunities. In this paper both the advantages and difficulties coated liners present will be explored by evaluating the impact on the liner, rings and the fuel consumption. This paper will additionally provide details regarding the different liner coating technologies being developed today. To support these recommendations the system’s performance characteristics will be demonstrated through rig testing and engine performance measurements.

Author(s):  
G Fernandes ◽  
J Fuschetto ◽  
Z Filipi ◽  
D Assanis ◽  
H McKee

Investigating the impact of jet fuel on diesel engine performance and emissions is very important for military vehicles, due to the US Army Single Fuel Forward Policy mandating that deployed vehicles must refuel with aviation fuel JP-8. There is a known torque and fuel economy penalty associated with the operation of a diesel engine with JP-8 fuel, due to its lower density and viscosity. On the other hand, a few experimental studies have suggested that kerosene-based fuels have the potential for lowering exhaust emissions, especially particulate matter, compared to diesel fuel #2 (DF-2). However, studies so far have typically focused on quantifying the effects of simply replacing the regular DF-2 with JP-8, rather than fully investigating the reasons behind the observed differences. This research evaluates the effect of using JP-8 fuel in a heavy-duty diesel engine on fuel injection, combustion, performance, and emissions, and subsequently utilizes the obtained insight to propose changes to the engine calibration to mitigate the impact of the trade-offs. Experiments were carried out on a Detroit Diesel Corporation (DDC) S60 engine outfitted with exhaust gas recirculation (EGR). The results indicate that torque and fuel economy of diesel fuel can be matched, without smoke or NO x penalty, by increasing the duration of injection to compensate for the lower fuel density. The lower cetane number of JP-8 caused an increased ignition delay and increased premixed combustion, and their cumulative effect led to relatively unchanged combustion phasing. Under almost all conditions, JP-8 led to lower NO x and particulate matter (PM) emissions and shifted the NO x-PM trade-off favourably.


2011 ◽  
Author(s):  
Mario Castagnola ◽  
Jonathan Caserta ◽  
Sougato Chatterjee ◽  
Hai-Ying Chen ◽  
Raymond Conway ◽  
...  

2013 ◽  
Vol 136 (6) ◽  
Author(s):  
Subenuka Sivagnanasundaram ◽  
Stephen Spence ◽  
Juliana Early

This paper presents an investigation of map width enhancement and the performance improvement of a turbocharger compressor using a series of static vanes in the annular cavity of a classical bleed slot system. The investigation has been carried out using both experimental and numerical analysis. The compressor stage used for this study is from a turbocharger unit used in heavy duty diesel engines of approximately 300 kW. Two types of vanes were designed and added to the annular cavity of the baseline classical bleed slot system. The purpose of the annular cavity vane technique is to remove some of the swirl that can be carried through the bleed slot system, which would influence the pressure ratio. In addition to this, the series of cavity vanes provides a better guidance to the slot recirculating flow before it mixes with the impeller main inlet flow. Better guidance of the flow improves the mixing at the inducer inlet in the circumferential direction. As a consequence, the stability of the compressor is improved at lower flow rates and a wider map can be achieved. The impact of two cavity vane designs on the map width and performance of the compressor was highlighted through a detailed analysis of the impeller flow field. The numerical and experimental study revealed that an effective vane design can improve the map width and pressure ratio characteristic without an efficiency penalty compared to the classical bleed slot system without vanes. The comparison study between the cavity vane and noncavity vane configurations presented in this paper showed that the map width was improved by 14.3% due to a significant reduction in surge flow and the peak pressure ratio was improved by 2.25% with the addition of a series of cavity vanes in the annular cavity of the bleed slot system.


2018 ◽  
Vol 70 (4) ◽  
pp. 687-699 ◽  
Author(s):  
Thomas Wopelka ◽  
Ulrike Cihak-Bayr ◽  
Claudia Lenauer ◽  
Ferenc Ditrói ◽  
Sándor Takács ◽  
...  

Purpose This paper aims to investigate the wear behaviour of different materials for cylinder liners and piston rings in a linear reciprocating tribometer with special focus on the wear of the cylinder liner in the boundary lubrication regime. Design/methodology/approach Conventional nitrided steel, as well as diamond-like carbon and chromium nitride-coated piston rings, were tested against cast iron, AlSi and Fe-coated AlSi cylinder liners. The experiments were carried out with samples produced from original engine parts to have the original surface topography available. Radioactive tracer isotopes were used to measure cylinder liner wear continuously, enabling separation of running-in and steady-state wear. Findings A ranking of the material pairings with respect to wear behaviour of the cylinder liner was found. Post-test inspection of the cylinder samples by scanning electron microscopy (SEM) revealed differences in the wear mechanisms for the different material combinations. The results show that the running-in and steady-state wear of the liners can be reduced by choosing the appropriate material for the piston ring. Originality/value The use of original engine parts in a closely controlled tribometer environment under realistic loading conditions, in conjunction with continuous and highly sensitive wear measurement methods and a detailed SEM analysis of the wear mechanisms, forms an intermediate step between engine testing and laboratory environment testing.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 139 ◽  
Author(s):  
Wenhua Li ◽  
Baihong Yu ◽  
Yutao Lv ◽  
Yan Shen ◽  
Ruoxuan Huang ◽  
...  

In order to investigate the friction and wear behavior between the nodular cast iron cylinder liner (Fe) and CuSn coated piston ring under heavy-duty conditions, piston rings with chromium(Cr) coating and CuSn-Cr coating were tested using the piston ring reciprocating liner test rig at the simulated working conditions of 56 MPa, 200 r/min, 190 °C. Compared with the Cr/Fe pair, the CuSn coating consumption of the CuSn-Cr/Fe pair made friction coefficient and cylinder wear loss decrease by 2.8% and 51.5%, respectively. Different size Sn patches worn from the CuSn coated piston ring were embedded into the cylinder liner surface based on the surface topography. This process was shown to reduce the surface roughness of a cylinder liner and form flatter plateau structures. Chemical elements analysis indicated that plateau structures on the cylinder liner surface matched with CuSn-Cr coated ring are helpful to promote the tribo-chemical reaction and generate the reactive products to protect the mutually contacted asperities.


2020 ◽  
pp. 146808742093016
Author(s):  
Onur Biyiklioğlu ◽  
Mustafa Ertunc Tat

Internal combustion engines consume about 90% of fuel refined from crude oil which supplies 30% of the annual global flow of energy. Heavy-duty diesel engines are the primary source of power used in highways, marine, railroads, and power stations. The right coating can improve the tribological properties of cylinder liners and increase the mechanical efficiency of an engine. Also, it can help to extend the maintenance periods, and enhance the reliability of the vehicles. In this research, tribological and economic evaluations were performed for coated and uncoated substrates from a cylinder liner of a heavy-duty diesel engine, aiming to lower friction, wear rate, and maintenance cost. A reciprocating friction test was conducted under dry condition using Wolfram carbide (tungsten carbide) ball applied a 10 N normal load on a ball on disk geometry. The cylinder liner was made of gray cast iron, and the substrates obtained were coated with three different coating materials (Cr3C2/NiCr, NiCr, and Al2O3/TiO2) through the thermal spray and high-velocity oxy-fuel coating process. Tribological evaluations showed that the substrates coded with Al2O3/TiO2 and Cr3C2/NiCr had the lowest friction coefficient and wear rate. The most economical coating was Al2O3/TiO2, being able to supply about 61% lower coefficient of friction and 94% less wear rate relative to the uncoated sample, for the price of one-third of the Cr3C2/NiCr coating and one half of a new gray cast iron cylinder liner.


Author(s):  
Sylvester Abanteriba

The compression and oil rings of the piston engine play a very important role in the performance and reliability of the piston engine. The rings are required to accomplish three main distinct tasks: 1. Sealing the combustion chamber gas from the crankcase to eliminate blow-by phenomenon, which constitutes the flow of some of the contents of the combustion chamber into the crankcase. 2. Proper distribution of the lubricating oil film over the piston skirt and cylinder liner. 3. Transfer of heat from piston to cylinder liner. Unfortunately the piston ring pack contributes to the highest proportion of the frictional losses in the engine and is more prone to high wear rates. In the engine, the compression rings are designed to provide effective sealing of the crankcase against the gases from the combustion chamber. The oil-rings provide an effective means of distributing the lubricating oil over the cylinder liner while keeping it from flowing into the combustion chamber. The ability of the compression rings to serve as a gas seal depends on their axial position within the groove. The ring needs to be in contact with the lower flank in order to provide the requisite sealing effect. Once the ring lifts itself from the lower flank its ability to act as an effective seal is compromised. The axial motion of the piston rings during the operation of the engine engenders blow-by and therefore has deteriorating effect on the engine performance. Not much work has, hereto, been done to study the impact of altitude on the movement of the piston rings and hence the blow-by phenomenon. This papers presents a simulation model to investigate this effect.


Author(s):  
Praveen Kandulapati ◽  
Chuen-Sen Lin ◽  
Dennis Witmer ◽  
Thomas Johnson ◽  
Jack Schmid ◽  
...  

Synthetic fuels produced from non-petroleum based feedstocks can effectively replace the depleting petroleum based conventional fuels while significantly reducing the emissions. The zero sulfur content and the near zero percentage of aromatics in the synthetic fuels make them promising clean fuels to meet the upcoming emissions regulations. However due to their significantly different properties when compared to the conventional fuels; the existing engines must be tested extensively to study their performance with the new fuels. This paper reports a detailed in-cylinder pressure measurement based study made on adaptability of the engine control module (ECM) of a modern heavy duty diesel engine to optimize the engine performance with the F-T diesel fuel. During this study, the F-T and Conventional diesel fuels were tested at different loads and various injection timing changes made with respect to the manufacturer setting. Results from these tests showed that the ECM used significantly different injection timings for the two fuels in the process of optimizing the engine performance. For the same power output the ECM used a 2° advance in the injection timing with respect to the manufacturer setting at the full load and 1° retard at the no load condition. While the injection timings used by the ECM were same for both the fuels at the 50% load condition. However, a necessity for further changes in the control strategies used by the ECM were observed to get the expected advantages with the F-T fuels.


Sign in / Sign up

Export Citation Format

Share Document