Operating Limits of Spark-Assisted Compression Ignition Combustion Under Boosted Ultra-EGR Dilute Conditions in a Negative Valve Overlap Engine

Author(s):  
Vassilis Triantopoulos ◽  
Jason B. Martz ◽  
Jeff Sterniak ◽  
George Lavoie ◽  
Dennis N. Assanis ◽  
...  

Abstract Spark-assisted compression ignition (SACI) is a low temperature combustion mode that can offer thermal efficiency improvements and lower nitrogen oxide emissions compared to conventional spark-ignited combustion. However, the SACI operating range is often limited due to excessive pressure rise rates driven by rapid heat release rates. Well-controlled experiments were performed to investigate the SACI operating limits under previously unexplored boosted, stoichiometric, EGR dilute conditions, where low temperature combustion engines promise high thermodynamic efficiencies. At higher intake boost, the SACI high load limit shifted towards lower fuel-to-charge equivalence ratio mixtures, creating a larger gap between the conventional spark-ignition EGR dilution limit and the boosted SACI operating limits. Combustion phasing retard was very effective at reducing maximum pressure rise rate levels until the stability limit, primarily due to slower end-gas burn rates. Gross fuel conversion efficiency improvements up to 10% were observed by using intake boost for either load expansion or dilution extension. Changes in engine speed necessitated changes in unburned gas temperature to match autoignition timing, but were shown to have negligible impact on the heat release profile on a crank angle basis. Lower engine speeds were favorable for load expansion, as time-based peak pressure rise rates scaled with engine speed.

Author(s):  
Valentin Soloiu ◽  
Marvin Duggan ◽  
Henry Ochieng ◽  
David Williams ◽  
Gustavo Molina ◽  
...  

In this study, the in-cylinder soot and NOx trade off was investigated in a Compression Engine by implementing Premixed Charge Compression Ignition (PCCI) coupled with Low Temperature Combustion (LTC) for selected regimes of 1–3 bars IMEP. In order to achieve that, an omnivorous (multi-fuel) single cylinder diesel engine was developed by injecting n-butanol in the intake port while being fueled with biodiesel by direct injection in the combustion chamber. By applying this methodology, the in-cylinder pressure decreased by 25% and peak pressure was delayed in the power stroke by about 8 CAD for the cycles in which the n-butanol was injected in the intake manifold at the engine speed of 800 rpm and low engine loads, corresponding to 1–3 bars IMEP. Compared with the baseline taken with ultra-low sulfur diesel no. 2 (USLD#2), the heat release presented a more complex shape. At 1–2 bars IMEP, the premixed charge stage of the combustion totally disappeared and a prolonged diffusion stage was found instead. At 3 bars IMEP, an early low temperature heat release was present that started 6 degrees (1.25 ms) earlier than the diesel reference heat release with a peak at 350 CAD corresponding to 1200 K. Heat losses from radiation of burned gas in the combustion chamber decreased by 10–50% while the soot emissions showed a significant decrease of about 98%, concomitantly with a 98% NOx reduction at 1 IMEP, and 77% at 3 IMEP, by controlling the combustion phases. Gaseous emissions were measured using an AVL SESAM FTIR and showed that there were high increases in CO, HC and NMHC emissions as a result of PCCI/LTC strategy; nevertheless, the technology is still under development. The results of this work indicate that n-butanol can be a very promising fuel alternative including for LTC regimes.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Valentin Soloiu ◽  
Marvin Duggan ◽  
Henry Ochieng ◽  
David Williams ◽  
Gustavo Molina ◽  
...  

In this study, the in-cylinder soot and NOx trade off was investigated in a compression engine by implementing premixed charge compression ignition (PCCI) coupled with low temperature combustion (LTC) for selected regimes of 1–3 bars IMEP. In order to achieve that, an omnivorous (multifuel) single cylinder diesel engine was developed by injecting n-butanol in the intake port while being fueled with biodiesel by direct injection in the combustion chamber. By applying this methodology, the in-cylinder pressure decreased by 25% and peak pressure was delayed in the power stroke by about 8 CAD for the cycles in which the n-butanol was injected in the intake manifold at the engine speed of 800 rpm and low engine loads, corresponding to 1–3 bars IMEP. Compared with the baseline taken with ultra-low sulfur diesel no. 2 (USLD#2), the heat release presented a more complex shape. t 1–2 bars IMEP, the premixed charge stage of the combustion totally disappeared and a prolonged diffusion stage was found instead. At 3 bars IMEP, an early low temperature heat release was present that started 6 deg (1.25 ms) earlier than the diesel reference heat release with a peak at 350 CAD corresponding to 1200 K. Heat losses from radiation of burned gas in the combustion chamber decreased by 10–50% while the soot emissions showed a significant decrease of about 98%, concomitantly with a 98% NOx reduction at 1 IMEP, and 77% at 3 IMEP, by controlling the combustion phases. Gaseous emissions were measured using an AVL SESAM FTIR and showed that there were high increases in CO, HC and NMHC emissions as a result of PCCI/LTC strategy; nevertheless, the technology is still under development. The results of this work indicate that n-butanol an be a very promising fuel alternative including for LTC regimes.


2018 ◽  
Vol 21 (8) ◽  
pp. 1426-1440 ◽  
Author(s):  
Buyu Wang ◽  
Michael Pamminger ◽  
Ryan Vojtech ◽  
Thomas Wallner

Gasoline compression ignition using a single gasoline-type fuel for direct/port injection has been shown as a method to achieve low-temperature combustion with low engine-out NOx and soot emissions and high indicated thermal efficiency. However, key technical barriers to achieving low-temperature combustion on multi-cylinder engines include the air handling system (limited amount of exhaust gas recirculation) as well as mechanical engine limitations (e.g. peak pressure rise rate). In light of these limitations, high-temperature combustion with reduced amounts of exhaust gas recirculation appears more practical. Furthermore, for high-temperature gasoline compression ignition, an effective aftertreatment system allows high thermal efficiency with low tailpipe-out emissions. In this work, experimental testing was conducted on a 12.4 L multi-cylinder heavy-duty diesel engine operating with high-temperature gasoline compression ignition combustion with port and direct injection. Engine testing was conducted at an engine speed of 1038 r/min and brake mean effective pressure of 1.4 MPa for three injection strategies, late pilot injection, early pilot injection, and port/direct fuel injection. The impact on engine performance and emissions with respect to varying the combustion phasing were quantified within this study. At the same combustion phasing, early pilot injection and port/direct fuel injection had an earlier start of combustion and higher maximum pressure rise rates than late pilot injection attributable to more premixed fuel from pilot or port injection; however, brake thermal efficiencies were higher with late pilot injection due to reduced heat transfer. Early pilot injection also exhibited the highest cylinder-to-cylinder variations due to differences in injector behavior as well as the spray/wall interactions affecting mixing and evaporation process. Overall, peak brake thermal efficiency of 46.1% and 46% for late pilot injection and port/direct fuel injection was achieved comparable to diesel baseline (45.9%), while early pilot injection showed the lowest brake thermal efficiency (45.3%).


2005 ◽  
Vol 6 (5) ◽  
pp. 475-486 ◽  
Author(s):  
S-C Kong ◽  
Y Ra ◽  
R D Reitz

An engine CFD model has been developed to simulate premixed charge compression ignition (PCCI) combustion using detailed chemistry. The numerical model is based on the KIVA code that is modified to use CHEMKIN as the chemistry solver. The model was applied to simulate ignition, combustion, and emissions processes in diesel engines operated to achieve PCCI conditions. Diesel PCCI experiments using both low- and high-pressure injectors were simulated. For the low-pressure injector with early injection (close to intake valve closure), the model shows that wall wetting can be minimized by using a pressure-swirl atomizer with a variable spray angle. In the case of using a high-pressure injector, it is found that late injection (SOI = 5 ° ATDC) benefits soot emissions as a result of low-temperature combustion at highly premixed conditions. The model was also used to validate the emission reduction potential of an HSDI diesel engine using a double injection strategy that favours PCCI conditions. It is concluded that the present model is useful to assess future engine combustion concepts, such as PCCI and low-temperature combustion (LTC).


Author(s):  
Amit Jhalani ◽  
Dilip Sharma ◽  
Pushpendra Kumar Sharma ◽  
Digambar Singh ◽  
Sumit Jhalani ◽  
...  

Diesel engines are lean burn engines; hence CO and HC emissions in the exhaust are less likely to occur in substantial amounts. The emissions of serious concern in compression ignition engines are particulate matter and nitrogen oxides because of elevated temperature conditions of combustion. Hence the researchers have strived continuously to lower down the temperature of combustion in order to bring down the emissions from CI engines. This has been tried through premixed charge compression ignition, homogeneous charge compression ignition (HCCI), gasoline compression ignition and reactivity controlled compression ignition (RCCI). In this study, an attempt has been made to critically review the literature on low-temperature combustion conditions using various conventional and alternative fuels. The problems and challenges augmented with the strategies have also been described. Water-in-diesel emulsion technology has been discussed in detail. Most of the authors agree over the positive outcomes of water-diesel emulsion for both performance and emissions simultaneously.


Author(s):  
Andrea Aniello ◽  
Lorenzo Bartolucci ◽  
Stefano Cordiner ◽  
Vincenzo Mulone ◽  
Sundar R. Krishnan ◽  
...  

Over the last few decades, emissions regulations for internal combustion engines have become increasingly restrictive, pushing researchers around the world to exploit innovative propulsion solutions. Among them, the dual fuel low temperature combustion (LTC) strategy has proven capable of reducing fuel consumption and while meeting emissions regulations for oxides of nitrogen (NOx) and particulate matter (PM) without problematic aftertreatment systems. However, further investigations are still needed to reduce engine-out hydrocarbon (HC) and carbon monoxide (CO) emissions as well as to extend the operational range and to further improve the performance and efficiency of dual-fuel engines. In this scenario, the present study focuses on numerical simulation of fumigated methane-diesel dual fuel LTC in a single-cylinder research engine (SCRE) operating at low load and high methane percent energy substitution (PES). Results are validated against experimental cylinder pressure and apparent heat release rate (AHRR) data. A 3D full-cylinder RANS simulation is used to thoroughly understand the influence of the start of injection (SOI) of diesel fuel on the overall combustion behavior, clarifying the causes of AHRR transition from two-stage AHRR at late SOIs to single-stage AHRR at early SOIs, low temperature heat release (LTHR) behavior, as well as high HC production. The numerical campaign shows that it is crucial to reliably represent the interaction between the diesel spray and the in-cylinder charge to match both local and overall methane energy fraction, which in turn, ensures a proper representation of the whole combustion. To that aim, even a slight deviation (∼3%) of the trapped mass or of the thermodynamic conditions would compromise the numerical accuracy, highlighting the importance of properly capturing all the phenomena occurring during the engine cycle. The comparison between numerical and experimental AHRR curves shows the capability of the numerical framework proposed to correctly represent the dual-fuel combustion process, including low temperature heat release (LTHR) and the transition from two-stage to single stage AHRR with advancing SOI. The numerical simulations allow for quantitative evaluation of the residence time of vapor-phase diesel fuel inside the combustion chamber and at the same time tracking the evolution of local diesel mass fraction during ignition delay — showing their influence on the LTHR phenomena. Oxidation regions of diesel and ignition points of methane are also displayed for each case, clarifying the reasons for the observed differences in combustion evolution at different SOIs.


Sign in / Sign up

Export Citation Format

Share Document