Design, Actuation, Experimental Setup and Testing of a 4-Cylinder Gasoline Spark Ignited Variable Compression Ratio Engine

Author(s):  
Tyler Miller ◽  
Joel Duncan ◽  
William Hensley ◽  
John Beard ◽  
Jeremy Worm ◽  
...  

Abstract The thermal efficiency of an Otto cycle engine is directly related to the compression ratio (CR). However, in a spark-ignited engine, the CR is often restricted by full load knock, thus limiting part load efficiency. A proof of concept design and experimental study has been conducted on a 4-cylinder naturally aspirated spark-ignited (SI) engine whereby a four-bar linkage mechanism has been implemented to vary the CR. The base engine selected was a production 2.0L GM-LNF SI 4-cylinder engine with a stock CR of 9.2:1 and with a bore and stroke of 86mm and 86mm, respectively. The engine was modified to allow the centerline axis of rotation of the crankshaft to translate in an arc about a fixed point. With the use of the four-bar mechanism, and larger dome volume pistons, a range of 8:1 to 11.5:1 CR was achieved. The prototype VCR engine was tested and analyzed at three different CR’s at a fixed load of 600 kPa net indicated mean effective pressure gross (IMEPGROSS) at an engine speed of 1000 revolutions per minute (RPM). At this condition, a sweep of combustion phasing was conducted. with a stoichiometric air to fuel mixture for each case. The CR’s selected for engine testing were 8.7:1, 10.2:1, and 11.1:1. The processed data includes averaged cycle analysis of each of the test conditions including combustion phasing, combustion duration, and cycle variation. The combustion data was also analyzed to determine overall heat release, indicated gross, net, pumping mean effective pressures, and indicated fuel conversion efficiency for each of the CR’s. The studies show an indicated fuel conversion efficiency of 31.2% for the 8.7:1 CR. As the CR was increased to 10.2:1 and 11.1:1 the relative increase in efficiency was 7.1% and 9.7% respectively at MBT combustion phasing.

2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Andrew Van Blarigan ◽  
Darko Kozarac ◽  
Reinhard Seiser ◽  
Robert Cattolica ◽  
Jyh-Yuan Chen ◽  
...  

An experimental investigation of methane fuel oxycombustion in a variable compression ratio, spark-ignited piston engine has been carried out. Compression ratio, spark-timing, and oxygen concentration sweeps were performed to determine peak performance conditions for operation with both wet and dry exhaust gas recirculation (EGR). Results illustrate that when operating under oxycombustion conditions an optimum oxygen concentration exists at which fuel-conversion efficiency is maximized. Maximum conversion efficiency was achieved with approximately 29% oxygen by volume in the intake for wet EGR, and approximately 32.5% oxygen by volume in the intake for dry EGR. All test conditions, including air, were able to operate at the engine's maximum compression ratio of 17 to 1 without significant knock limitations. Peak fuel-conversion efficiency under oxycombustion conditions was significantly reduced relative to methane-in-air operation, with wet EGR achieving 23.6%, dry EGR achieving 24.2% and methane-in-air achieving 31.4%. The reduced fuel-conversion efficiency of oxycombustion conditions relative to air was primarily due to the reduced ratio of specific heats of the EGR working fluids relative to nitrogen (air) working fluid.


2021 ◽  
pp. 146808742110169
Author(s):  
Zhongnan Ran ◽  
Jon Longtin ◽  
Dimitris Assanis

Solid oxide fuel cell – internal combustion engine (SOFC-ICE) hybrid systems are an attractive solution for electricity generation. The system can achieve up to 70% theoretical electric power conversion efficiency through energy cascading enabled by utilizing the anode off-gas from the SOFC as the fuel source for the ICE. Experimental investigations were conducted with a single cylinder Cooperative Fuel Research (CFR) engine by altering fuel-air equivalence ratio (ϕ), and compression ratio (CR) to study the engine load, combustion characteristics, and emissions levels of dry SOFC anode off-gas consisting of 33.9% H2, 15.6% CO, and 50.5% CO2. The combustion efficiency of the anode off-gas was directly evaluated by measuring the engine-out CO emissions. The highest net-indicated fuel conversion efficiency of 31.3% occurred at ϕ  = 0.90 and CR = 13:1. These results demonstrate that the anode off-gas can be successfully oxidized using a spark ignition combustion mode. The fuel conversion efficiency of the anode tail gas is expected to further increase in a more modern engine architecture that can achieve increased burn rates in comparison to the CFR engine. NOx emissions from the combustion of anode off-gas were minimal as the cylinder peak temperatures never exceeded 1800 K. This experimental study ultimately demonstrates the viability of an ICE to operate using an anode off-gas, thus creating a complementary role for an ICE to be paired with a SOFC in a hybrid power generation plant.


Author(s):  
Yaoxin Liu ◽  
Libin Yang ◽  
Mengxiang Fang ◽  
Guanyi Chen ◽  
Zhongyang Luo ◽  
...  

A new system using combined coal gasification and combustion has been developed for clean and high efficient utilization of coal. Following are the processes. The coal is first partially gasified and the produced fuel gas is then used for industrial purpose or as a fuel for a gas turbine. The char residue from the gasifier is burned in a circulating fluidized bed combustor to generate steam for power generation. For having the experimental investigation, a 1MW pilot plant test facility has been erected. Experiments on coal partial gasification with air, and recycle gas have been made on the 1 MW pilot plant test facility. The results show that, with air as gasification agent, the system can produce 4–5MJ/Nm3 low heating value dry gas and fuel conversion efficiency attains 50–70% in the gasifier, and residue 20–40% converted in the combustor and total conversion efficiency in the system is over 90%. In the gasifier, the carbon conversion efficiency increases with the bed temperature and the air blown temperature. CaCO3 has an effective effect for sulfur removal in the gasifier. The sulfur removal efficiency attains 85% with Ca/S molar ratio 2.5. The system can produce 12–14MJ/Nm3 middle heating value day gas by using high temperature circulation solid as heat carrier and recycle gas or steam as gasification media, but the fuel conversion efficiency only attain 30–40% in the gasifier and most of fuel energy is converted in the combustor. CaCO3 has an obvious effect on tar cracking and H2S removal. The sulfur removal efficiency attains 80% with Ca/S molar ratio 2.5.


Author(s):  
Joshua A. Bittle ◽  
Jesse K. Younger ◽  
Timothy J. Jacobs

Biodiesel remains an alternative fuel of interest for use in diesel engines. A common characteristic of biodiesel, relative to petroleum diesel, is a lowered heating value (or per mass energy content of the fuel). For same torque engine comparisons, the lower heating value translates into a higher brake specific fuel consumption (amount of fuel consumed per unit of power produced). The efficiency at which fuel energy converts into work energy, however, may remain unchanged. In this experimental study, evaluating nine unique engine operating conditions, the brake fuel conversion efficiency (an assessor of fuel energy to work energy efficiency) remains unchanged between 100% petroleum diesel fuel and 100% biodiesel fuel (palm olein) at all conditions, except for high load conditions. Several parameters may affect the brake fuel conversion efficiency, including heat loss, mixture properties, pumping work, friction, combustion efficiency, and combustion timing. This article describes a study that evaluates how the aforementioned parameters may change with the use of biodiesel and petroleum diesel, and how these parameters may result in differences in the brake fuel conversion efficiency.


Author(s):  
Deivanayagam Hariharan ◽  
Brian Gainey ◽  
Ziming Yan ◽  
Sotirios Mamalis ◽  
Benjamin Lawler

Abstract A new concept of single fuel reactivity-controlled compression ignition (RCCI) has been proposed through the catalytic partial oxidation (CPOX) reformation of diesel fuel. The reformed fuel mixture is then used as the low reactivity fuel and diesel itself is used as the high reactivity fuel. In this paper, two reformate mixtures from the reformation of diesel were selected for further analysis. Each reformate fuel mixture contained a significant fraction of inert gases (89% and 81%). The effects of the difference in the molar concentrations of the reformate mixtures were studied by experimenting with diesel as the direct injected fuel in RCCI over a varying start of injection timings and different blend ratios (i.e., the fraction of low and high reactivity fuels). The reformate mixture with the lower inert gas concentration had earlier combustion phasing and shorter combustion duration at any given diesel start of injection timing. The higher reactivity separation between reformate mixture and diesel, compared with gasoline and diesel, causes the combustion phasing of reformate-diesel RCCI to be more sensitive to the start of injection timing. The maximum combustion efficiency was found at a CA50 before top dead center (TDC), whereas the maximum thermal efficiency occurs at a CA50 after TDC. The range of energy-based blend ratios in which reformate-diesel RCCI is possible is between 25% and 45%, limited by ringing intensity (RI) at the low limit of blend ratios, and coefficient of variance (COV) of net indicated mean effective pressure (IMEPn) and combustion efficiency at the high limit. Intake boosting becomes necessary due to the oxygen deficiency caused by the low energy density of the reformate mixtures as it displaces intake air.


Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 261 ◽  
Author(s):  
Alberto Boretti

Dual fuel engines using diesel and fuels that are gaseous at normal conditions are receiving increasing attention. They permit to achieve the same (or better) than diesel power density and efficiency, steady-state, and substantially similar transient performances. They also permit to deliver better than diesel engine-out emissions for CO2, as well as particulate matter, unburned hydrocarbons, and nitrous oxides. The adoption of injection in the liquid phase permits to further improve the power density as well as the fuel conversion efficiency. Here, a model is developed to study a high-pressure, 1600 bar, liquid phase injector for liquefied natural gas (LNG) in a high compression ratio, high boost engine. The engine features two direct injectors per cylinder, one for the diesel and one for the LNG. The engine also uses mechanically assisted turbocharging (super-turbocharging) to improve the steady-state and transient performances of the engine, decoupling the power supply at the turbine from the power demand at the compressor. Results of steady-state simulations show the ability of the engine to deliver top fuel conversion efficiency, above 48%, and high efficiencies, above 40% over the most part of the engine load and speed range. The novelty of this work is the opportunity to use very high pressure (1600 bar) LNG injection in a dual fuel diesel-LNG engine. It is shown that this high pressure permits to increase the flow rate per unit area; thus, permitting smaller and lighter injectors, of faster actuation, for enhanced injector-shaping capabilities. Without fully exploring the many opportunities to shape the heat release rate curve, simulations suggest two-point improvements in fuel conversion efficiency by increasing the injection pressure.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Aan Yudianto ◽  
Peixuan Li

The proper design of the flywheel undeniably determines in tuning the engine to confirm the better output engine performance. The aim of this study is to mathematically investigate the effect of various values of the compression ratio on some essential parameters to determine the appropriate value for the flywheel dimension. A numerical calculation approach was proposed to eventually determine the dimension of the engine flywheel on a five-cylinder four-stroke Spark Ignition (SI) engine. The various compression ratios of 8.5, 9, 9.5, 10, 10.5, and 11 were selected to perform the calculations. The effects of compression ratio on effective pressure, indicated mean effective pressure (IMEP), dynamic irregularity value of the crankshaft, and the diameter of the flywheel was clearly investigated. The study found that 2.5 increment value of the compression ratio significantly increases the effective pressure of about 41.53% on the starting of the expansion stroke. While at the end of the compression stroke, the rise of effective pressure is about 76.67%, and the changes in dynamic irregularity merely increase by about 1.79%. The same trend applies to the flywheel diameter and width, which increases 2.08% for both.


Sign in / Sign up

Export Citation Format

Share Document