Development of Methodology of Groundwater Flow and Solute Transport Analysis in the Horonobe Area, Hokkaido, Japan

Author(s):  
Keisuke Maekawa ◽  
Hitoshi Makino ◽  
Hiroshi Kurikami ◽  
Tadafumi Niizato ◽  
Manabu Inagaki ◽  
...  

It is important for establishment of safety assessment techniques of geological disposal to understand groundwater flow and solute transport accurately. Therefore, we are positioning to confirm an applicability of the techniques in realistic environment as a crucial issue in R&D. We have attempted and planed some relevant studies as below: - A methodology to integrate activities from site investigations to evaluation of solute transport was examined. We have carried out groundwater flow analysis on a regional scale using geological and hydrological information from surface-based investigations at the Horonobe area, and also solute transport analysis based on the information of the trajectory analysis. - We have carried out a preliminary simulation of groundwater flow and salinity concentration distribution using information on climatic and sea-level changes, and evolution of geological structures considering the impacts of natural events and processes. Consequently, we could outline the impacts of natural events and processes on geological environment including hydrogeology, hydrochemistry and their evolutions. - We have been planning to develop and apply a methodology of groundwater flow and solute transport analysis to the shallow part, the Horonobe coastal area and around the URL. These techniques would become a basis for future site specific safety assessment in Japan.

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 457
Author(s):  
Hongbin Zhan ◽  
Quanrong Wang ◽  
Zhang Wen

The theme of this special issue is to explore the new territories beyond conventional subsurface flow and transport theories. We have selected 12 articles in this special issue and these articles cover a wide range of problems including (1) Non-Fickian chemical transport in various environments; (2) Non-Darcian flow; (3) Flow and transport in low-permeability media; (4) Vadose zone process; (5) Regional scale groundwater flow and groundwater-surface interaction; (6) Innovative numerical methods. The major contributions of these papers are summarized in this editorial.


2003 ◽  
Vol 807 ◽  
Author(s):  
David Holton ◽  
Lee J Hartley ◽  
Aimo Hautojärvi ◽  
Paul Marschall ◽  
Jan-Olof Selroos

ABSTRACTModels of groundwater flow and transport are routinely used as part of the safety assessment of a site, and increasingly to aid the site investigation strategy and design of a proposed repository. This emphasis puts greater demands on those models to reflect a higher level of realism to incorporate additional information in the vicinity of the repository. This paper describes a successful approach to incorporate these different scales, from canister- to regional-scale, within one model. Such an approach is able to resolve the details of groundwater flow around the waste packages in the overall hydrological setting of the site.


2002 ◽  
Vol 713 ◽  
Author(s):  
Allan Hedin ◽  
Ulrik Kautsky ◽  
Lena Morén ◽  
Patrik Sellin ◽  
Jan-Olof Selroos

ABSTRACTIn preparation for coming site investigations for siting of a deep repository for spent nuclear fuel, the Swedish Nuclear Fuel and Waste Management Company, SKB has carried out the longterm safety assessment SR 97, requested by the Swedish Government. The repository is of the KBS-3 type, where the fuel is placed in isolating copper canisters with a high-strength cast iron insert. The canisters are surrounded by bentonite clay in individual deposition holes at a depth of 500 m in granitic bedrock. Geological data are taken from three sites in Sweden to shed light on different conditions in Swedish granitic bedrock.The future evolution of the repository system is analysed in the form of five scenarios. The first is a base scenario where the repository is postulated to be built entirely according to specifications and where present-day conditions in the surroundings, including climate, persist. The four other scenarios show the evolution if the repository contains a few initially defective canisters, in the event of climate change, in the event of earthquakes, and in the event of future inadvertent human intrusion.The principal conclusion of the assessment is that the prospects of building a safe deep repository for spent nuclear fuel in Swedish granitic bedrock are very good. The results of the assessment also serve as a basis for formulating requirements and preferences regarding the bedrock in site investigations, for designing a programme for site investigations, for formulating functional requirements on the repository's barriers, and for prioritisation of research.SR 97 has been reviewed both by an international group of OECD/NEA experts and by Swedish authorities. The NEA reviewers concluded that “SR 97 provides a sensible illustration of the potential safety of the KBS-3 concept”, and no issues were identified that need to be resolved prior to proceeding to the investigation of potential sites. The authorities' conclusions were in principal consistent with those of the NEA.Uncertainties and lack of knowledge in different areas identified in SR 97 have strongly influenced the contents and structure of SKBs most recent research programme, RD&DProgramme 2001.Since SR 97, the methodology for probabilistic consequence analyses have been further developed. Analytic approximations to the numerical transport models used in SR 97 have been developed. The new models have been used to extend the probabilistic calculations in SR 97.


2021 ◽  
Author(s):  
Liqun Jiang ◽  
Ronglin Sun ◽  
Xing Liang

<p>Protection and management of groundwater resources demand high-resolution distributions of hydraulic parameters (e.g., hydraulic conductivity (K) and specific storage (Ss)) of aquifers. In the past, these parameters were obtained by traditional analytical solutions (e.g., Theis (1935) or Cooper and Jacob (1946)). However, traditional methods assume the aquifer to be homogeneous and yield the equivalent parameter, which are averages over a large volume and are insufficient for predicting groundwater flow and solute transport process (Butler & Liu, 1993). For obtaining the aquifer heterogeneity, some scholars have used kriging (e.g., Illman et al., 2010) and hydraulic tomography (HT) (e.g., Yeh & Liu, 2000; Zhu & Yeh, 2005) to describe the K distribution.</p><p>In this study, the laboratory heterogeneous aquifer sandbox is used to investigate the effect of different hydraulic parameter estimation methods on predicting groundwater flow and solute transport process. Conventional equivalent homogeneous model, kriging and HT are used to characterize the heterogeneity of sandbox aquifer. A number of the steady-state head data are collected from a series of single-hole pumping tests in the lab sandbox, and are then used to estimate the K fields of the sandbox aquifer by the steady-state inverse modeling in HT survey which was conducted using the SimSLE algorithm (Simultaneous SLE, Xiang et al., 2009), a built-in function of the software package of VSAFT2. The 40 K core samples from the sandbox aquifer are collected by the Darcy experiments, and are then used to obtain K fields through kriging which was conducted using the software package of Surfer 13. The role of prior information on improving HT survey is then discussed. The K estimates by different methods are used to predict the process of steady-state groundwater flow and solute transport, and evaluate the merits and demerits of different methods, investigate the effect of aquifer heterogeneity on groundwater flow and solute transport.</p><p>According to lab sandbox experiments results, we concluded that compared with kriging, HT can get higher precision to characterize the aquifer heterogeneity and predict the process of groundwater flow and solute transport. The 40 K fields from the K core samples are used as priori information of HT survey can promote the accuracy of K estimates. The conventional equivalent homogeneous model cannot accurately predict the process of groundwater flow and solute transport in heterogeneous aquifer. The enhancement of aquifer heterogeneity will lead to the enhancement of the spatial variability of tracer distribution and migration path, and the dominant channel directly determines the migration path and tracer distribution.</p>


Sign in / Sign up

Export Citation Format

Share Document