A Non-Equilibrium Turbulence Dissipation Correction and its Influence on Pollution Predictions for DI Diesel Engines

Author(s):  
Franz X. Tanner ◽  
Guang-Sheng Zhu ◽  
Rolf D. Reitz

Abstract A correction for the turbulence dissipation rate, based on non-equilibrium turbulence considerations from rapid distortion theory, has been derived and implemented in combination with the RNG k–ε model in a KIVA-based code. This correction reflects the time delay between changes in the turbulent kinetic energy due to changes in the mean flow and its turbulence dissipation rate, and it is shown that this time delay is controlled by the turbulence Reynolds number. The model correction has been validated with experimental data in the compression and expansion phase of a small diesel engine operated in motored mode. Combustion simulations of two heavy-duty DI diesel engines have been performed with the RNG k–ε model and the dissipation rate correction. The focus of these computations has been on the nitric oxide formation and the net soot production. These simulations have been compared with experimental data and their behavior is explained in terms of the turbulence dissipation effect on the transport coefficients for mass and heat diffusion. It has been found, that the dissipation correction yields consistent results with observations reported in previous studies.

2003 ◽  
Vol 125 (2) ◽  
pp. 534-540 ◽  
Author(s):  
F. X. Tanner ◽  
G.-S. Zhu ◽  
R. D. Reitz

A correction for the turbulence dissipation rate, based on nonequilibrium turbulence considerations from rapid distortion theory, has been derived and implemented in combination with the RNG k-ε model in a KIVA-based code. This correction reflects the time delay between changes in the turbulent kinetic energy due to changes in the mean flow and its turbulence dissipation rate, and it is shown that this time delay is controlled by the turbulence Reynolds number. The model correction has been validated with experimental data in the compression and expansion phase of a small diesel engine operated in motored mode. Combustion simulations of two heavy-duty DI diesel engines have been performed with the RNG k-ε model and the dissipation rate correction. The focus of these computations has been on the nitric oxide formation and the net soot production. These simulations have been compared with experimental data and their preditions are explained in terms of the turbulence dissipation effect on the transport coefficients for mass and heat diffusion. It has been found, that the dissipation correction yields consistent results with observations reported in previous studies.


Author(s):  
Jeffrey D. Ferguson ◽  
Dibbon K. Walters ◽  
James H. Leylek

For the first time in the open literature, code validation quality data and a well-tested, highly reliable computational methodology are employed to isolate the true performance of seven turbulence treatments in discrete jet film cooling. The present research examines both computational and high quality experimental data for two length-to-diameter ratios of a row of streamwise injected, cylindrical film holes. These two cases are used to document the performance of the following turbulence treatments: 1) standard k-ε model with generalized wall functions; 2) standard k-ε model with non-equilibrium wall functions: 3) Renormalization Group k-ε (RNG) model with generalized wall functions; 4) RNG model with non-equilibrium wall functions: 51 standard k-ε model with two-layer turbulence wall treatment; 6) Reynolds Stress Model (RSM) with generalized wall functions; and 7) RSM with non-equilibrium wall functions. Overall, the standard k-ε turbulence model with the two-layer near-wall treatment, which resolves the viscous sublayer, produces results that are more consistent with experimental data.


1993 ◽  
Vol 115 (2) ◽  
pp. 453-460 ◽  
Author(s):  
Hui Zhang ◽  
M. Karim Moallemi ◽  
Sunil Kumar

In this study a thermal analysis is performed on the hot dip-coating process where solidification of metal occurs on a bar moving through a finite molten bath. A continuum model is considered that accounts for important transport mechanisms such as axial heat diffusion, buoyancy, and shear-induced melt motion in the bath. A numerical solution procedure is developed, and its predictions are compared with those of an analytical approximate solution, as well as available experimental data. The predictions of the numerical scheme are in good agreement with the experimental data. The results of the approximate solution, however, exhibit significant disagreement with the data, which is attributed to the simplifying assumptions used in its development. Parametric effects of the bath geometry, and initial and boundary temperatures and solid velocity, as characterized by the Reynolds number, Grashof number, and Stefan numbers, are presented.


2021 ◽  
Author(s):  
Gaston Latessa ◽  
Angela Busse ◽  
Manousos Valyrakis

<p>The prediction of particle motion in a fluid flow environment presents several challenges from the quantification of the forces exerted by the fluid onto the solids -normally with fluctuating behaviour due to turbulence- and the definition of the potential particle entrainment from these actions. An accurate description of these phenomena has many practical applications in local scour definition and to the design of protection measures.</p><p>In the present work, the actions of different flow conditions on sediment particles is investigated with the aim to translate these effects into particle entrainment identification through analytical solid dynamic equations.</p><p>Large Eddy Simulations (LES) are an increasingly practical tool that provide an accurate representation of both the mean flow field and the large-scale turbulent fluctuations. For the present case, the forces exerted by the flow are integrated over the surface of a stationary particle in the streamwise (drag) and vertical (lift) directions, together with the torques around the particle’s centre of mass. These forces are validated against experimental data under the same bed and flow conditions.</p><p>The forces are then compared against threshold values, obtained through theoretical equations of simple motions such as rolling without sliding. Thus, the frequency of entrainment is related to the different flow conditions in good agreement with results from experimental sediment entrainment research.</p><p>A thorough monitoring of the velocity flow field on several locations is carried out to determine the relationships between velocity time series at several locations around the particle and the forces acting on its surface. These results a relevant to determine ideal locations for flow investigation both in numerical and physical experiments.</p><p>Through numerical experiments, a large number of flow conditions were simulated obtaining a full set of actions over a fixed particle sitting on a smooth bed. These actions were translated into potential particle entrainment events and validated against experimental data. Future work will present the coupling of these LES models with Discrete Element Method (DEM) models to verify the entrainment phenomena entirely from a numerical perspective.</p>


2007 ◽  
Vol 8 (5) ◽  
pp. 449-464 ◽  
Author(s):  
C. H. Son ◽  
T. A. Shethaji ◽  
C. J. Rutland ◽  
H Barths ◽  
A Lippert ◽  
...  

Three non-linear k-ε models were implemented into the multi-dimensional computational fluid dynamics code GMTEC with the purpose of comparing them with existing linear k-ε models including renormalization group variations. The primary focus of the present study is to evaluate the potential of these non-linear models in engineering applications such as the internal combustion engine. The square duct flow and the backwards-facing step flow were two simple test cases chosen for which experimental data are available for comparison. Successful simulations for these cases were followed by simulations of an engine-type intake flow to evaluate the performance of the non-linear models in comparison with experimental data and the standard linear k-ε models as well as two renormalization group types. All the non-linear models are found to be an improvement over the standard linear model, but mostly in simple flows. For more complex flows, such as the engine-type case, only the cubic non-linear models appear to make a modest improvement in the mean flow but without any improvement in the root-mean-square values. These improvements are overshadowed by the stiffness of the cubic models and the requirements for smaller time steps. The contributions of each non-linear term to the Reynolds stress tensor are analysed in detail in order to identify the different characteristics of the different non-linear models for engine intake flows.


1996 ◽  
Vol 321 ◽  
pp. 335-370 ◽  
Author(s):  
R. R. Kerswell

Rigorous upper bounds on the viscous dissipation rate are identified for two commonly studied precessing fluid-filled configurations: an oblate spheroid and a long cylinder. The latter represents an interesting new application of the upper-bounding techniques developed by Howard and Busse. A novel ‘background’ method recently introduced by Doering & Constantin is also used to deduce in both instances an upper bound which is independent of the fluid's viscosity and the forcing precession rate. Experimental data provide some evidence that the observed viscous dissipation rate mirrors this behaviour at sufficiently high precessional forcing. Implications are then discussed for the Earth's precessional response.


Author(s):  
Lawrence Novak

Rate-based models suitable for equipment or transport-reaction modeling require a capability for predicting transport coefficients over a sufficient range of temperature and pressure. This paper demonstrates a relatively simple novel approach to correlate and estimate transport coefficients for pure components over the entire fluid region.The use of Chapman-Enskog transport coefficients for reducing self-diffusion coefficient and viscosity to dimensionless form results in relatively simple mathematical relationships between component dimensionless transport coefficients and residual entropy over the entire fluid region. Dimensionless self-diffusion coefficients and viscosities were calculated from extensive molecular dynamics simulation data and experimental data on argon, methane, ethylene, ethane, propane, and n-decane. These dimensionless transport coefficients were plotted against dimensionless residual entropy calculated from highly accurate reference equations of state.Based on experimental data, the new scaling model introduced here shows promise as: (1) an equation of state-based transport coefficient correlation over the entire fluid region (liquid, gas, and critical fluid), (2) a component transport coefficient correlation for testing transport data consistency, and (3) a component transport coefficient correlation for interpolation and extrapolation of self-diffusion coefficient and viscosity.


2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Angelo Pasini ◽  
Ruzbeh Hadavandi ◽  
Dario Valentini ◽  
Giovanni Pace ◽  
Luca d'Agostino

A high-head three-bladed inducer has been equipped with pressure taps on the hub along the blade channels with the aim of more closely investigating the dynamics of cavitation-induced instabilities developing in the impeller flow. Spectral analysis of the pressure signals obtained from two sets of transducers mounted both in the stationary and rotating frames has allowed to characterize the nature, intensity, and interactions of the main flow instabilities detected in the experiments: subsynchronous rotating cavitation (RC), cavitation surge (CS), and a high-order axial surge oscillation. A dynamic model of the unsteady flow in the blade channels has been developed based on experimental data and on suitable descriptions of the mean flow and the oscillations of the cavitating volume. The model has been used for estimating at the inducer operating conditions of interest the intensity of the flow oscillations associated with the occurrence of the CS mode generated by RC in the inducer inlet.


1980 ◽  
Vol 33 (6) ◽  
pp. 975 ◽  
Author(s):  
GN Haddad ◽  
RW Crompton

The transport coefficients υdr and D⊥/μ have been measured in mixtures of 0.5 % and 4 % hydrogen in argon. All measurements were made at 293 K. It is shown that for these mixtures the use of the solution of the Boltzmann equation based on the two-term Legendre expansion of the velocity distribution function introduces no significant error in the analysis of the transport data. All the experimental data have been predicted to within � 3.5 % using previously published cross section data.


2006 ◽  
Vol 13 (3) ◽  
pp. 247-253 ◽  
Author(s):  
Y. I. Troitskaya ◽  
O. A. Druzhinin ◽  
D. A. Sergeev ◽  
V. V. Papko ◽  
G. N. Balandina

Abstract. The objective of the present paper is to develop a theoretical model describing the evolution of a turbulent wake behind a towed sphere in a stably stratified fluid at large Froude and Reynolds numbers. The wake flow is considered as a quasi two-dimensional (2-D) turbulent jet flow whose dynamics is governed by the momentum transfer from the mean flow to a quasi-2-D sinuous mode growing due to hydrodynamic instability. The model employs a quasi-linear approximation to describe this momentum transfer. The model scaling coefficients are defined with the use of available experimental data, and the performance of the model is verified by comparison with the results of a direct numerical simulation of a 2-D turbulent jet flow. The model prediction for the temporal development of the wake axis mean velocity is found to be in good agreement with the experimental data obtained by Spedding (1997).


Sign in / Sign up

Export Citation Format

Share Document