Effect of Solid-Fluid Energy Parameters on Streaming Potential and Flow Rate in Pressure-Driven Flow in Microchannels

Author(s):  
Fuzhi Tian ◽  
Junfeng Zhang ◽  
Daniel Y. Kwok

Electrokinetic phenomena play an important role in microfluidic transport behavior. Review of literature suggests that surface energetic can also be an important factor, but rarely explored. Typically, surface energetic is taken into account by consideration as an arbitrarily selected slip boundary condition in the modified Navier-Stokes equation. In this paper, instead of selecting this arbitrary slip condition, we examine how solid-liquid energy parameters influence the transport of microfluidics in terms of streaming potential. The simultaneous effects of surface energetics and electrokinetics will be conducted by means of a mean-field free energy lattice boltzmann approach recently proposed. Rather than using the conventional Navier-Stokes equation with a slip condition, the description solid-liquid energetic is manifested by the more physical energy parameters in the mean-field description of the method. As a result, the magnitude of liquid slip can be related directly to the solid-liquid interfacial slip. These results will be employed in conjunction with the description of electrokinetic transport phenomena for streaming potential. The variation of streaming potential as a function of the energy parameters (solid-liquid interaction) is clearly demonstrated. In pressure-driven liquid microfluidics, the flow rate may be decreased due to the counter-effect between the electrokinetic and slip.

2015 ◽  
Vol 60 (2) ◽  
pp. 835-841 ◽  
Author(s):  
T. Skrzypczak ◽  
E. Węgrzyn-Skrzypczak ◽  
J. Winczek

AbstractThe paper is focused on the modeling of the directional solidification process of pure metal. During the process the solidification front is sharp in the shape of the surface separating liquid from solid in three dimensional space or a curve in 2D. The position and shape of the solid-liquid interface change according to time. The local velocity of the interface depends on the values of heat fluxes on the solid and liquid sides. Sharp interface solidification belongs to the phase transition problems which occur due to temperature changes, pressure, etc. Transition from one state to another is discontinuous from the mathematical point of view. Such process can be identified during water freezing, evaporation, melting and solidification of metals and alloys, etc.The influence of natural convection on the temperature distribution and the solid-liquid interface motion during solidification of pure copper is studied. The mathematical model of the process is based on the differential equations of heat transfer with convection, Navier-Stokes equation and the motion of the interface. This system of equations is supplemented by the appropriate initial and boundary conditions. In addition the continuity conditions at the solidification interface must be properly formulated. The solution involves the determination of the temporary temperature and velocity fields and the position of the interface. Typically, it is impossible to obtain the exact solution of such problem. The numerical model of solidification of pure copper in a closed cavity is presented, the influence of the natural convection on the phase change is investigated. Mathematical formulation of the problem is based on the Stefan problem with moving internal boundaries. The equations are spatially discretized with the use of fixed grid by means of the Finite Element Method (FEM). Front advancing technique uses the Level Set Method (LSM). Chorin’s projection method is used to solve Navier-Stokes equation. Such approach makes possible to uncouple velocities and pressure. The Petrov-Galerkin formulation is employed to stabilize numerical solutions of the equations. The results of numerical simulations in the 2D region are discussed and compared to the results obtained from the simulation where movement of the liquid phase was neglected.


Author(s):  
А.В. ГУКАСЯН ◽  
Д.А. ШИЛЬКО ◽  
В.С. КОСАЧЕВ

Решением уравнения Навье–Стокса в задачах Куэтта–Пуазейля были определены границы, в рамках которых описан процесс отжима прессового масла с помощью геометрических и скоростных параметров витков шнека. Вычисления производились для материала с высокой вязкостью, имеющего характеристики эффективной вязкости неньютоновской реологии. С использованием балансовых соотношений потоков удалось спрогнозировать работу маслоотжимных агрегатов в режиме форпрессования и экспеллера. В результате выведена модель отжима растительных масел на основе гидродинамики слоистого течения масличного материала в маслоотжимных агрегатах с учетом распределения потока и гидростатического давления в каналах витков шнека. Использование модели двумерного слоистого течения на основе решения задачи Куэтта–Пуазейля базируется на уравнении Навье–Стокса для установившегося режима. Результаты моделирования основаны на технологических параметрах мезги, поступающей на прессование, начальной масличности подсолнечной мезги и начальном расходе, равном 380 кг/ч, который определяется согласно пропускной способности как аналитическое решение этой задачи. Верхняя граница применимости модели слоистого течения масличного материала определяется соотношением геометрии витка шнека с минимальной пропускной способностью 154 кг/ч и содержанием масла в этом материале в диапазоне от 0 до 0,5 кг на 1 кг масличного материала. Нижняя граница применимости этой модели определяется идеализированным случаем экструдирования мезги по каналам шнека при отсутствии отжима. Зависимости изменения давления от расхода мезги, получаемые на основе слоистой модели, позволяют надежно интерполировать распределение давления по виткам шнека в процессе отжима масличного материала. На практике достигнута остаточная масличность жмыха 10% при производительности 200 кг/ч, что дает хорошее совпадение с полученными расчетными значениями. By solving the Navier–Stokes equation in the Couette–Poiseuille problems, the boundaries were determined, within which the process of pressing oil is described using the geometric and speed parameters of the auger turns. The calculations were performed for a high viscosity material having non-Newtonian rheology effective viscosity characteristics. Using the balance flow ratios, it was possible to predict the operation of the oil-pumping units in the pre-pressing and expeller mode. As a result, a model of vegetable oil extraction is derived based on the hydrodynamics of the layered flow of oilseed material in oil-pressing units, taking into account the flow distribution and hydrostatic pressure in the channels of the auger turns. The use of a two-dimensional layered flow model based on the solution of the Couette–Poiseuille problem is based on the Navier–Stokes equation for the steady-state regime. The simulation results are based on the technological parameters of the pulp entering the pressing – the initial oil content of the sunflower pulp and the initial flow rate of 380 kg/h, which is determined according to the throughput as an analytical solution to this problem. The upper limit of the applicability of the model of layered flow of oil-bearing material is determined by the ratio of the geometry of the auger turn with a minimum throughput of 154 kg/h and the oil content in this material in the range from 0 to 0,5 kgper 1 kgof oil-bearing material. The lower limit of the applicability of this model is determined by the idealized case of extrusion of pulp through the auger channels in the absence of pressing. The dependences of the pressure change on the pulp flow rate, obtained on the basis of the layered model, allow us to reliably interpolate the pressure distribution along the auger turns during the pressing of oilseed material. The residual oil content of the oilcake is about 10% at a capacity of 200 kg/h, which gives a good match with the calculated values.


Author(s):  
Simon Hochgerner

We use a Hamiltonian interacting particle system to derive a stochastic mean field system whose McKean–Vlasov equation yields the incompressible Navier–Stokes equation. Since the system is Hamiltonian, the particle relabeling symmetry implies a Kelvin Circulation Theorem along stochastic Lagrangian paths. Moreover, issues of energy dissipation are discussed and the model is connected to other approaches in the literature.


PETRO ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 65
Author(s):  
Listiana Satiawati ◽  
Prayang Sunni Yulia

<p><em>Calculation of hydrocarbon flow in the form of oil or gas in Petroleum Engineering is used the Darcy equation. Deriving the Navier Stokes equation produces a general equation that cannot be used for special conditions, for example linear or radial flow because the formulation is different. In this paper, the Darcy equation obtained through experimental evidence is derived from the Navier Stokes equation with several assumptions and simplifications . The calculation in this paper uses a numerical solution, which uses Fortran language, as one approach. Then by using field data, the Darcy equation is used in calculating the flow rate and the velocity of linear fluid in the reservoir. And also the calculation of the pressure from the well to the outermost point of the reservoir with radial fluid flow, so that the pressure gradient data can be obtained from the well to the outermost point of the reservoir.</em><em></em></p>


Author(s):  
S. H. Hong ◽  
S. I. Son ◽  
K. W. Kim

In order to maintain the accurate and precise movement of the actuator of the hydraulic systems, it is necessary to guarantee smooth function of the fluid flow control valves. Concerning hydraulic valves, the spool type directional control valve has particular lock problem. The hydraulic lock occurs when uneven pressure distribution surrounding the spool in the clearance between spool and sleeve causes the spool to move sideways out of its centered position. And the contact between spool and sleeve causes to increase friction and eventually, the spool is blocked inside the sleeve. To reduce the possibility of hydraulic lock, peripheral grooves balancing uneven pressure distribution in the radial clearance is commonly applied to spool. Reynolds equation is commonly used to investigate the lubrication characteristics of the spool valve. However, some of assumptions used in Reynolds equation are not valid when cavitation occurs or fluid inertia is significant in spool valve. So, the study on the applicability and precision of Reynolds equation for spool valve analysis is needed. In this study, the differences between the results from Navier-Stokes equation and Reynolds equation are compared when the cavitation is considered. Frictional forces, lateral forces and leakage flow rate with various aspect ratio of groove are calculated. Besides, when the number of groove is increased, the forces and leakage flow rate are compared. Based on the comparison the applicability of Reynolds equation in calculating the spool valve is also discussed.


2001 ◽  
Vol 440 ◽  
pp. 381-390 ◽  
Author(s):  
SIEGFRIED GROSSMANN ◽  
ANNA VON DER HEYDT ◽  
DETLEF LOHSE

The second-order velocity structure tensor of weakly anisotropic strong turbulence is decomposed into its SO(3) invariant amplitudes dj(r). Their scaling is derived within a scaling approximation of a variable-scale mean-field theory of the Navier–Stokes equation. In the isotropic sector j = 0 Kolmogorov scaling d0(r) ∝ r2/3 is recovered. The scaling of the higher j amplitudes (j even) depends on the type of the external forcing that maintains the turbulent flow. We consider two options: (i) for an analytic forcing and for decreasing energy input into the sectors with increasing j, the scaling of the higher sectors j > 0 can become as steep as dj(r) ∝ rj+2/3; (ii) for a non-analytic forcing we obtain dj(r) ∝ r4/3 for all non-zero and even j.


1998 ◽  
Vol 115 (1) ◽  
pp. 18-24 ◽  
Author(s):  
G.W. Wei ◽  
D.S. Zhang ◽  
S.C. Althorpe ◽  
D.J. Kouri ◽  
D.K. Hoffman

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 288
Author(s):  
Alexei Kushner ◽  
Valentin Lychagin

The first analysis of media with internal structure were done by the Cosserat brothers. Birkhoff noted that the classical Navier–Stokes equation does not fully describe the motion of water. In this article, we propose an approach to the dynamics of media formed by chiral, planar and rigid molecules and propose some kind of Navier–Stokes equations for their description. Examples of such media are water, ozone, carbon dioxide and hydrogen cyanide.


Sign in / Sign up

Export Citation Format

Share Document