scholarly journals Numerical Simulation and Experimental Observations of Confined Bubble Growth During Flow Boiling in a Microchannel With Rectangular Cross-Section of High Aspect Ratio

Author(s):  
Y. Q. Zu ◽  
S. Gedupudi ◽  
Y. Y. Yan ◽  
T. G. Karayiannis ◽  
D. B. R. Kenning

Bubble nucleation and growth to confinement during flow boiling in microchannels lead to high heat transfer coefficients. They may also create pressure fluctuations that change the superheat driving evaporation and cause flow reversals that promote transient dry-out and uneven distribution of flow between parallel channels. The work described in this paper is part of a programme to develop models for these processes that will aid the design of evaporative cooling systems for devices operating at high heat fluxes. Video observations of water boiling in a single copper channel of rectangular cross-section, 0.38 × 1.6 mm and a heated length 40 mm, were performed. The top side of the channel was a glass window. Results are presented for a heat flux, averaged over the area of the three metal sides, of 210 and 173 W/m2K for incompressible and compressible inlet flow conditions. The inlet pressure was about 1.12 bar and the mass flux was 747.5 kg/m2s for both conditions examined. The results demonstrated the strong influence of compressibility on the mode of bubble detachment and growth and therefore on flow patterns, pressure fluctuations and heat transfer rates. The fluid mechanics of boiling in this size channel were also successfully investigated by 3-D numerical simulation for bubbles growing at a defined rate with a fixed inlet flow rate using the 3-D CFD code FLUENT 6 (no upstream compressibility). The study examined the fluid mechanics of bubble motion with heat transfer, but the mass transfer across the bubble-liquid interface was not simulated in the present work. A small vapour bubble was injected at the wall to ensure the bubble generation is under a quasi nucleation condition. Its growth was driven by an internal source of vapour, at a rate derived by analysis of the experimental measurements of growth. The simulation reproduced well the observed motion and shape of the bubble. The simulation was then extended to model bubbles generated and growing randomly in a 2-D channel.

Author(s):  
S. Gedupudi ◽  
Y. Q. Zu ◽  
T. G. Karayiannis ◽  
D. B. R. Kenning ◽  
Y. Y. Yan

A simple 1-D model with low requirements for computing time is required to investigate parametric influences on the potentially adverse effects of pressure fluctuations driven by confined vapour bubble growth in microchannel evaporative cooling systems operating at high heat fluxes. A model is developed in this paper for the particular conditions of a channel of rectangular cross-section with high aspect ratio with a constant inlet flow rate (zero upstream compressibility). (The model will later be extended to the conditions of finite upstream compressibility that lead to transient flow reversal). Some parametric trends predicted by the model are presented. The simplifying assumptions in the model are examined in the light of a 3-D simulation by a commercial CFD code, described in an accompanying paper by the same authors. The predictions of pressure changes are in reasonable agreement. It is suggested that the 1-D model will be a useful design tool.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6473
Author(s):  
Mohammadmahdi Talebi ◽  
Sahba Sadir ◽  
Manfred Kraut ◽  
Roland Dittmeyer ◽  
Peter Woias

Determination of local heat transfer coefficient at the interface of channel wall and fluid was the main goal of this experimental study in microchannel flow boiling domain. Flow boiling heat transfer to DI-water in a single microchannel with a rectangular cross section was experimentally investigated. The rectangular cross section dimensions of the experimented microchannel were 1050 μm × 500 μm and 1500 μm × 500 μm. Experiments under conditions of boiling were performed in a test setup, which allows the optical and local impedance measurements of the fluids by mass fluxes of 22.1 kg·m−2·s−1 to 118.8 kg·m−2·s−1 and heat fluxes in the range of 14.7 kW·m−2 to 116.54 kW·m−2. The effect of the mass flux, heat flux, and flow pattern on flow boiling local heat transfer coefficient and pressure drop were investigated. Experimental data compared to existing correlations indicated no single correlation of good predictive value. This was concluded to be the case due to the instability of flow conditions on one hand and the variation of the flow regimes over the experimental conditions on the other hand. The results from the local impedance measurements in correlation to the optical measurements shows the flow regime variation at the experimental conditions. From these measurements, useful parameters for use in models on boiling like the 3-zone model were shown. It was shown that the sensing method can shed a precise light on unknown features locally in slug flow such as residence time of each phases, bubble frequency, and duty cycle.


Author(s):  
Ankit Kalani ◽  
Satish G. Kandlikar

Flow boiling in microchannels offers many advantages such as high heat transfer coefficient, higher surface area to volume ratio, low coolant inventory, uniform temperature control and compact design. The application of these flow boiling systems has been severely limited due to early critical heat flux (CHF) and flow instability. Recently, a number of studies have focused on variable flow cross-sectional area to augment the thermal performance of microchannels. In a previous work, the open microchannel with manifold (OMM) configuration was experimentally investigated to provide high heat transfer coefficient coupled with high CHF and low pressure drop. In the current work, high speed images of plain surface using tapered manifold are obtained to gain an insight into the nucleating bubble behavior. The mechanism of bubble nucleation, growth and departure are described through high speed images. Formation of dry spots for both tapered and uniform manifold geometry is also discussed.


2021 ◽  
Author(s):  
Ji Hwan Lim ◽  
Minkyu Park

Abstract The onset of nucleate boiling (ONB) is the point at which the heat transfer mechanism in fluids changes and is one of the thermo-hydraulic factors that must be considered when establishing a cooling system operation strategy. Because the high heat flux of several MW/m2, which is loaded within a tokamak, is applied under a one-side heating condition, it is necessary to determine a correlative relation that can predict ONB under special heating conditions. In this study, the ONB of a one-side-heated screw tube was experimentally analyzed via a subcooled flow boiling experiment. The helical nut structure of the screw tube flow path wall allows for improved heat transfer performance relative to smooth tubes, providing a screw tube with a 53.98% higher ONB than a smooth tube. The effects of the system parameters on the ONB heat flux were analyzed based on the changes in the heat transfer mechanism, with the results indicating that the flow rate and degree of subcooling are proportional to the ONB heat flux because increasing these factors improves the forced convection heat transfer and increases the condensation rate, respectively. However, it was observed that the liquid surface tension and latent heat decrease as the pressure increases, leading to a decrease in the ONB heat flux. An evaluation of the predictive performance of existing ONB correlations revealed that most have high error rates because they were developed based on ONB experiments on micro-channels or smooth tubes and not under one-side high heat load conditions. To address this, we used dimensional analysis based on Python code to develop new ONB correlations that reflect the influence of system parameters.


Author(s):  
Jensen Hoke ◽  
Todd Bandhauer ◽  
Jack Kotovsky ◽  
Julie Hamilton ◽  
Paul Fontejon

Liquid-vapor phase change heat transfer in microchannels offers a number of significant advantages for thermal management of high heat flux laser diodes, including reduced flow rates and near constant temperature heat rejection. Modern laser diode bars can produce waste heat loads >1 kW cm−2, and prior studies show that microchannel flow boiling heat transfer at these heat fluxes is possible in very compact heat exchanger geometries. This paper describes further performance improvements through area enhancement of microchannels using a pyramid etching scheme that increases heat transfer area by ∼40% over straight walled channels, which works to promote heat spreading and suppress dry-out phenomenon when exposed to high heat fluxes. The device is constructed from a reactive ion etched silicon wafer bonded to borosilicate to allow flow visualization. The silicon layer is etched to contain an inlet and outlet manifold and a plurality of 40μm wide, 200μm deep, 2mm long channels separated by 40μm wide fins. 15μm wide 150μm long restrictions are placed at the inlet of each channel to promote uniform flow rate in each channel as well as flow stability in each channel. In the area enhanced parts either a 3μm or 6μm sawtooth pattern was etched vertically into the walls, which were also scalloped along the flow path with the a 3μm periodicity. The experimental results showed that the 6μm area-enhanced device increased the average maximum heat flux at the heater to 1.26 kW cm2 using R134a, which compares favorably to a maximum of 0.95 kw cm2 dissipated by the plain walled test section. The 3μm area enhanced test sections, which dissipated a maximum of 1.02 kW cm2 showed only a modest increase in performance over the plain walled test sections. Both area enhancement schemes delayed the onset of critical heat flux to higher heat inputs.


Sign in / Sign up

Export Citation Format

Share Document