scholarly journals 1-D Modelling and 3-D Simulation of Confined Bubble Formation and Pressure Fluctuations During Flow Boiling in a Microchannel With a Rectangular Cross-Section of High Aspect Ratio

Author(s):  
S. Gedupudi ◽  
Y. Q. Zu ◽  
T. G. Karayiannis ◽  
D. B. R. Kenning ◽  
Y. Y. Yan

A simple 1-D model with low requirements for computing time is required to investigate parametric influences on the potentially adverse effects of pressure fluctuations driven by confined vapour bubble growth in microchannel evaporative cooling systems operating at high heat fluxes. A model is developed in this paper for the particular conditions of a channel of rectangular cross-section with high aspect ratio with a constant inlet flow rate (zero upstream compressibility). (The model will later be extended to the conditions of finite upstream compressibility that lead to transient flow reversal). Some parametric trends predicted by the model are presented. The simplifying assumptions in the model are examined in the light of a 3-D simulation by a commercial CFD code, described in an accompanying paper by the same authors. The predictions of pressure changes are in reasonable agreement. It is suggested that the 1-D model will be a useful design tool.

Author(s):  
Detlef Pape ◽  
Herve´ Jeanmart ◽  
Jens von Wolfersdorf ◽  
Bernhard Weigand

An experimental and numerical investigation of the pressure loss and the heat transfer in the bend region of a smooth two-pass cooling channel with a 180°-turn has been performed. The channels have a rectangular cross-section with a high aspect ratio of H/W = 4. The heat transfer has been measured using the transient liquid crystal method. For the investigations the Reynolds-number as well as the distance between the tip and the divider wall (tip distance) are varied. While the Reynolds number varies from 50’000 to 200’000 and its influence on the normalized pressure loss and heat transfer is found to be small, the variations of the tip distance from 0.5 up to 3.65 W produce quite different flow structures in the bend. The pressure loss over the bend thus shows a strong dependency on these variations.


Author(s):  
Y. Q. Zu ◽  
S. Gedupudi ◽  
Y. Y. Yan ◽  
T. G. Karayiannis ◽  
D. B. R. Kenning

Bubble nucleation and growth to confinement during flow boiling in microchannels lead to high heat transfer coefficients. They may also create pressure fluctuations that change the superheat driving evaporation and cause flow reversals that promote transient dry-out and uneven distribution of flow between parallel channels. The work described in this paper is part of a programme to develop models for these processes that will aid the design of evaporative cooling systems for devices operating at high heat fluxes. Video observations of water boiling in a single copper channel of rectangular cross-section, 0.38 × 1.6 mm and a heated length 40 mm, were performed. The top side of the channel was a glass window. Results are presented for a heat flux, averaged over the area of the three metal sides, of 210 and 173 W/m2K for incompressible and compressible inlet flow conditions. The inlet pressure was about 1.12 bar and the mass flux was 747.5 kg/m2s for both conditions examined. The results demonstrated the strong influence of compressibility on the mode of bubble detachment and growth and therefore on flow patterns, pressure fluctuations and heat transfer rates. The fluid mechanics of boiling in this size channel were also successfully investigated by 3-D numerical simulation for bubbles growing at a defined rate with a fixed inlet flow rate using the 3-D CFD code FLUENT 6 (no upstream compressibility). The study examined the fluid mechanics of bubble motion with heat transfer, but the mass transfer across the bubble-liquid interface was not simulated in the present work. A small vapour bubble was injected at the wall to ensure the bubble generation is under a quasi nucleation condition. Its growth was driven by an internal source of vapour, at a rate derived by analysis of the experimental measurements of growth. The simulation reproduced well the observed motion and shape of the bubble. The simulation was then extended to model bubbles generated and growing randomly in a 2-D channel.


2004 ◽  
Vol 412-414 ◽  
pp. 1045-1049 ◽  
Author(s):  
K. Kajikawa ◽  
T. Hayashi ◽  
K. Funaki ◽  
E.S. Otabe ◽  
T. Matsushita

1970 ◽  
Vol 4 (2) ◽  
pp. 99-110
Author(s):  
Md Mahmud Alam ◽  
Delowara Begum ◽  
K Yamamoto

The effects of torsion, aspect ratio and curvature on the flow in a helical pipe of rectangular cross- section are studied by introducing a non-orthogonal helical coordinate system. Spectral method is applied as main tool for numerical approach where Chebyshev polynomial is used. The numerical calculations are obtained by the iterative method. The calculations are carried out for 0≤ δ ≤0.02, 1≤ λ ≤ 2.85, 1≤ γ ≤2.4, at Dn = 50 & 100 respectively, where d is the non-dimensional curvature, l the torsion parameter, g the aspect ratio and  Dn the pressure driven parameter (Dean number).DOI: http://dx.doi.org/10.3329/jname.v4i2.991 Journal of Naval Architecture and Marine Engineering Vol.4(2) 2007 p.99-110


The shape of a Möbius band made of a flexible material, such as paper, is determined. The band is represented as a bent, twisted elastic rod with a rectangular cross-section. Its mechanical equilibrium is governed by the Kirchhoff–Love equations for the large deflections of elastic rods. These are solved numerically for various values of the aspect ratio of the cross-section, and an asymptotic solution is found for large values of this ratio. The resulting shape is shown to agree well with that of a band made from a strip of plastic.


Sign in / Sign up

Export Citation Format

Share Document