DSMC Simulation of Supersonic Gas Flow in Microchannel

Author(s):  
Mohamad M. Joneidipour ◽  
Reza Kamali

The present study is concerned with the flow characteristics of a microchannel supersonic gas flow. The direct simulation Monte Carlo (DSMC) method is employed for predicting the density, velocity and temperature distributions. For gas flows in micro systems, the continuum hypothesis, which underpins the Navier-Stokes equations, may be inappropriate. This is because the mean free path of the gas molecules may be comparable to the characteristic length scale of the device. The Knudsen number, Kn, which is the ratio of the mean free path of the gas molecules to the characteristic length scale of the device, is a convenient measure of the degree of rarefaction of the flow. In this paper, the effect of Knudsen number on supersonic microchannel flow characteristics is studied by varying the incoming flow pressure or the microchannel height. In addition, the microchannel height and the incoming flow pressure are varied simultaneously to investigate their effects on the flow characteristics. Meanwhile, the results show that until the diffuse reflection model is used throughout the microchannel, the temperature and the Mach number in the microchannel entrance may not be equal to free-stream values and therefore a discontinuity appear in the flow field.

1998 ◽  
Vol 08 (01) ◽  
pp. 37-53 ◽  
Author(s):  
CHRISTIAN SCHMEISER ◽  
ALEXANDER ZWIRCHMAYR

This paper deals with electron transport in semiconductors when electron–phonon interaction is considered. Smallness of the mean free path compared to a characteristic length scale and of the phonon energy compared to the thermal energy of the crystal are assumed. The corresponding limits in the transport problem are carried out and shown not to commute. An intermediate limit leads to a new macroscopic model.


2000 ◽  
Vol 6 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Gerasimos D. Danilatos

The reverse flow pressure limiting aperture is a device that creates and sustains a substantial gas pressure difference between two chambers connected via an aperture. The aperture is surrounded by an annular orifice leading to a third chamber. The third chamber is maintained at a relatively high pressure that forces gas to flow through the annular aperture into the first of said two chambers. The ensuing gas flow develops into a supersonic annular gas jet, the core of which is coaxial with the central aperture. A pumping action is created at the core of the jet and any gas molecules leaking through the aperture from the second chamber are entrained and forced into the first chamber, thus creating a substantial pressure difference between the first and second chamber.


Author(s):  
Alexander A. Minakov ◽  
Christoph Schick

Ultrafast chip nanocalorimetry opens up remarkable possibilities in materials science by allowing samples to be cooled and heated at extremely high rates. Due to heat transfer limitations, controlled ultrafast cooling and heating can only be achieved for tiny samples in calorimeters with a micron-thick membrane. Even if ultrafast heating can be controlled under quasi-adiabatic conditions, ultrafast controlled cooling can be performed if the calorimetric cell is located in a heat-conducting gas. It was found that the maximum possible cooling rate increases as 1/r0 with decreasing radius r0 of the hot zone of the membrane. The possibility of increasing the maximum cooling rate with decreasing r0 was successfully implemented in many experiments. In this regard, it is interesting to answer the question: what is the maximum possible cooling rate in such experiments if r0 tends to zero? Indeed, on submicron scales, the mean free path of gas molecules lmfp becomes comparable to r0, and the temperature jump that exists at the membrane/gas interface becomes significant. Considering the limitation associated with thermal resistance at the membrane/gas interface and considering the transfer of heat through the membrane, we show that the controlled cooling rate can reach billions of K/s, up to 1010 K/s.


Author(s):  
K. J. Daun ◽  
S. C. Huberman

Sizing aerosolized nanoparticles through time-resolved laser-induced incandescence (TiRe-LII) requires an accurate model of the heat conduction from the laser-energized particle to the surrounding gas. Under transition regime conditions this is often done using Fuchs’ boundary-sphere method, which requires the analyst to specify the thickness of a collisionless layer surrounding the particle, representing the Knudsen layer. Traditionally the boundary layer thickness is set to the mean free path of the gas at the boundary temperature, but recently some TiRe-LII practitioners have adopted a more complex treatment that accounts for particle curvature and directional distribution of gas molecules. This paper presents a critical reassessment of this approach; while this modification is more representative of the true Knudsen layer thickness, it does not improve the accuracy of heat conduction rates estimated using Fuchs’ boundary sphere methods under conditions prevailing in most TiRe-LII experiments.


This paper is an account of an experimental investigation of the motions of free electrons in air by the method developed by Townsend. An improved form of apparatus is described with the appropriate theory. The following parameters of the electronic motion were determined as functions of the ratio Z/p of the electric field strength Z to the gas pressure p : Townsend’s energy factor k r the drift velocity W , the mean free path at unit pressure L and the mean proportion n of its energy lost in collisions with gas molecules. The experimental data are given in the form of tables and curves. The drift velocity W is found by a new procedure based on the Hall effect and by comparing the velocities W so obtained with the direct measurements of W by Nielsen & Bradbury it is seen that the velocities of agitation are distributed approximately according to Druyvesteyn’s law when Z/p exceeds 0.5. Bailey’s factor G , which is of importance in ionospheric studies, is obtained from the experimental dependence of η on k r . Theoretical formulae are derived for k r and W in terms of L, G and Z/p . The theory of the new method for measuring W is given in an appendix.


2000 ◽  
Vol 6 (1) ◽  
pp. 21-30
Author(s):  
Gerasimos D. Danilatos

Abstract The reverse flow pressure limiting aperture is a device that creates and sustains a substantial gas pressure difference between two chambers connected via an aperture. The aperture is surrounded by an annular orifice leading to a third chamber. The third chamber is maintained at a relatively high pressure that forces gas to flow through the annular aperture into the first of said two chambers. The ensuing gas flow develops into a supersonic annular gas jet, the core of which is coaxial with the central aperture. A pumping action is created at the core of the jet and any gas molecules leaking through the aperture from the second chamber are entrained and forced into the first chamber, thus creating a substantial pressure difference between the first and second chamber.


2013 ◽  
Vol 328 ◽  
pp. 684-689
Author(s):  
Qi Xin Liu ◽  
Zhi Yong Cai ◽  
Xiao Ping Yu

Now the non-equilibrium MD simulations are frequently used to study the gas flow characteristic at nanoscale. In the non-equilibrium MD simulations, one force which is several magnitude orders larger than the actual force was added on all gas molecules. Its very necessary to study whether such large force added in non-equilibrium MD simulation will affect the simulation results. The present paper carried out the comparative studies on the simulation results of gas flow in nanopores by non-equilibrium and equilibrium MD. The gas number density profile and the gas molecular mean free path are studied in this paper, our simulation results indicate that both non-equilibrium and equilibrium MD produce no obvious difference on simulation results of the gas number density profile and the gas molecular mean free path. It could be concluded that even the force added on every gas molecules is very large in non-equilibrium MD simulation; the added force doesnt obviously affect the simulation results.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 127
Author(s):  
Kiril Shterev

Micro-electromechanical systems (MEMS) have developed rapidly in recent years in various technical fields that have increased their interest in the Direct Simulation Monte Carlo (DSMC) method. In this paper, we present a simple representation of the DSMC collision scheme and investigate the correctness of the Simplified Bernoulli Trial (SBT) collision scheme for the calculation of two-dimensional flows. The first part of the collision scheme, which determines collision pairs, is presented following the derivation of the expression for the mean free path and using the cumulative distribution function. Approaches and conclusions based on one-dimensional flows are not always directly applicable to two- and three-dimensional flows. We investigated SBT correctness by using the two-dimensional pressure-driven gas flow of monoatomic gas as a test case. We studied the influence of shuffling of the list of particles per cell (PPC) before the collision scheme’s execution, as well as the minimal and maximal number of PPC, on the correctness of the solution. The investigation showed that shuffling and the number of PPC played an important role in the correctness of SBT. Our recommendations are straightforwardly applicable to three-dimensional flows. Finally, we considered the mixing of two gases and compared the results available in the literature.


2021 ◽  
Vol 11 (20) ◽  
pp. 9517
Author(s):  
Buchen Wu ◽  
Geng Xue ◽  
Jie Feng ◽  
Shujin Laima

To investigate the aerodynamic characteristics of a twin-box girder in turbulent incoming flow, we carried out wind tunnel tests, including two aerodynamic interferences: leading body-height grid, and leading circular cylinder. In this study, the pressure distribution and the mean and fluctuating aerodynamic forces with the two interferences are compared with bare deck in detail to investigate the relationship between aerodynamic characteristics and the incoming flow characteristics (including Reynolds number and turbulence intensity). The experimental results reveal that, owing to the body-height flow characteristics around the deck interfered with by the body-height grid, the disturbed aerodynamic characteristics of the twin-box girder differ considerably from those of the bare twin-box girder. At the upstream girder, due to the vortex emerging from the body-height grid breaking the separation bubble, pressure plateaus in the upper and lower surface are eliminated. In addition, the turbulence generated by the body-height grid reduces the Reynolds number sensitivity of the twin-box girder. At a relatively high Reynolds number, the fluctuating forces are mainly dominated by turbulence intensity, and the time-averaged forces show almost no change under high turbulence intensity. At a low Reynolds number, the time-averaged forces change significantly with the turbulence intensity. Moreover, at a low Reynolds number, the wake of the leading cylinder effectively forces the boundary layer to transition to turbulence, which reduces the Reynolds number sensitivity of the mean aerodynamic forces and breaks the separation bubbles. Additionally, the fluctuating drag force and the fluctuating lift force are insensitive to the diameter and the spacing ratio.


Sign in / Sign up

Export Citation Format

Share Document