Understanding the Role of Surface Micro-Texture on the Delayed Freezing of Drops on Cold Surfaces

Author(s):  
Guoping Fang ◽  
Yadollah Maham ◽  
Alidad Amirfazli

Freezing of drops on surfaces has many consequences in icing of various systems, e.g. micro-condensers. It is known that when a water drop is placed on a cold surface and the surface temperature is reduced, it will not necessarily freeze when the surface temperature has reached zero degrees Celsius. The delay in freezing of a drop on a cold surface is not well understood; especially the effect that micro- and nano-texture of a surface has this delay. In this study, freezing and melting points of water drops on various micro-textured surfaces, i.e. superhydrophilic, and superhydrophobic have been measured by differential scanning calorimetry (DSC). A comparison of the experimental results with smooth hydrophilic and hydrophobic surfaces allows us to understand the roles of surface chemistry and roughness in freezing of drops in contact with such surfaces. It is found that when the surface chemistry is hydrophobic, roughness will delay the freezing and a drop may not freeze until the surface temperature has been lower than −15 ° C. On the contrary, for hydrophilic surfaces, roughness will shorten the freezing delay and facilitate formation of ice on the surface. This can explain the benefit of the superhydrophobic surfaces (SHS) in preventing ice formation.

2019 ◽  
Vol 876 ◽  
pp. 1041-1051 ◽  
Author(s):  
Wei Wang ◽  
Chen Ji ◽  
Fangye Lin ◽  
Jun Zou ◽  
S. Dorbolo

We investigate the conditions that determine the detachment of a water drop from different vibrating textured plates by using vertical vibrations. The plate surfaces were patterned by a lattice of pillars of different shapes with different geometrical arrangements. The acceleration threshold for the water droplet to bounce off the surfaces was measured as a function of the excitation frequency. In each case, the acceleration threshold presents a minimum at the natural frequency of the droplet. The minimum acceleration required for the take-off is larger for small droplets than for large droplets. Namely, one finds that the value of the threshold depends on the size of the droplet and on the maximum apparent contact area between the droplet and the substrate. The theoretical model takes into account the energy necessary to break the capillary bridges between the droplet and the pillars of the surface. This model captures the main ingredients explaining the drop size dependence of the acceleration threshold for the take-off.


2008 ◽  
Author(s):  
Anoop Gupta ◽  
Folarin Erogbogbo ◽  
Mark T. Swihart ◽  
Hartmut Wiggers

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1026
Author(s):  
Elisa Chiodi ◽  
Allison M. Marn ◽  
Matthew T. Geib ◽  
M. Selim Ünlü

The importance of microarrays in diagnostics and medicine has drastically increased in the last few years. Nevertheless, the efficiency of a microarray-based assay intrinsically depends on the density and functionality of the biorecognition elements immobilized onto each sensor spot. Recently, researchers have put effort into developing new functionalization strategies and technologies which provide efficient immobilization and stability of any sort of molecule. Here, we present an overview of the most widely used methods of surface functionalization of microarray substrates, as well as the most recent advances in the field, and compare their performance in terms of optimal immobilization of the bioreceptor molecules. We focus on label-free microarrays and, in particular, we aim to describe the impact of surface chemistry on two types of microarray-based sensors: microarrays for single particle imaging and for label-free measurements of binding kinetics. Both protein and DNA microarrays are taken into consideration, and the effect of different polymeric coatings on the molecules’ functionalities is critically analyzed.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Fausta Loffredo ◽  
Loredana Tammaro ◽  
Tiziana Di Luccio ◽  
Carmela Borriello ◽  
Fulvia Villani ◽  
...  

AbstractTungsten disulfide (WS2) nanotubes (NTs) are examined here as a filler for polylactide (PLA) for their ability to accelerate PLA crystallization and for their promising biocompatibility in relevant to biomedical applications of PLA-WS2 nanocomposites. In this work, we have studied the structural and thermal properties of PLA-WS2 nanocomposite films varying the concentration of WS2 NTs from 0 (neat PLA) to 0.6 wt%. The films were uniaxially drawn at 90 °C and annealed at the same temperature for 3 and 10 min. Using wide angle x-ray scattering, Raman spectroscopy and differential scanning calorimetry, we probed the effects of WS2 NT addition on the structure of the PLA films at various stages of processing (unstretched, stretching, annealing). We found that 0.6 wt% of WS2 induces the same level of crystallinity in as stretched PLA-WS2 as annealing in neat PLA for 10 min. These data provide useful insights into the role of WS2 NTs on the structural evolution of PLA-WS2 composites under uniaxial deformation, and extend their applicability to situations where fine tuning of PLA crystallinity is desirable.


2012 ◽  
Vol 19 (06) ◽  
pp. 1250062 ◽  
Author(s):  
X. H. ZHANG ◽  
Y. L. YUE ◽  
H. T. WU

Boroaluminosilicate glasses containing La2O3 were prepared by the normal quenching method. The glass transition temperatures (Tg) were measured by differential scanning calorimetry (DSC). The structural role of RO was investigated by nuclear magnetic resonance (NMR). Chemical durability was evaluated by weight losses of glass samples after immersion in HC1 solution. High resolution scanning electron microscopy (HR-SEM) was used to examine the surface micrographs of corroded glass samples. The dielectric constant and tangent loss were measured in the frequency range 10–106 Hz. The results revealed that chemical durability and dielectric properties increased with increasing La2O3 content.


2011 ◽  
Vol 11 (12) ◽  
pp. 6049-6062 ◽  
Author(s):  
X. Yue ◽  
H. Liao ◽  
H. J. Wang ◽  
S. L. Li ◽  
J. P. Tang

Abstract. Mineral dust aerosol can be transported over the nearby oceans and influence the energy balance at the sea surface. The role of dust-induced sea surface temperature (SST) responses in simulations of the climatic effect of dust is examined by using a general circulation model with online simulation of mineral dust and a coupled mixed-layer ocean model. Both the longwave and shortwave radiative effects of mineral dust aerosol are considered in climate simulations. The SST responses are found to be very influential on simulated dust-induced climate change, especially when climate simulations consider the two-way dust-climate coupling to account for the feedbacks. With prescribed SSTs and dust concentrations, we obtain an increase of 0.02 K in the global and annual mean surface air temperature (SAT) in response to dust radiative effects. In contrast, when SSTs are allowed to respond to radiative forcing of dust in the presence of the dust cycle-climate interactions, we obtain a global and annual mean cooling of 0.09 K in SAT by dust. The extra cooling simulated with the SST responses can be attributed to the following two factors: (1) The negative net (shortwave plus longwave) radiative forcing of dust at the surface reduces SST, which decreases latent heat fluxes and upward transport of water vapor, resulting in less warming in the atmosphere; (2) The positive feedback between SST responses and dust cycle. The dust-induced reductions in SST lead to reductions in precipitation (or wet deposition of dust) and hence increase the global burden of small dust particles. These small particles have strong scattering effects, which enhance the dust cooling at the surface and further reduce SSTs.


ACS Nano ◽  
2017 ◽  
Vol 11 (5) ◽  
pp. 4453-4462 ◽  
Author(s):  
Seokhyoung Kim ◽  
David J. Hill ◽  
Christopher W. Pinion ◽  
Joseph D. Christesen ◽  
James R. McBride ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document