Refined Modeling of Projectile Impact Onto Submerged Structure

Author(s):  
Justin Onisoru ◽  
Ovidiu Coman ◽  
Paul Wilson ◽  
George Thomas

Structural integrity of spent fuel racks is a critical safety issue in nuclear power stations. The standard approach of evaluating the effects of an impact projectile on a submerged structure, which constitute the start point of the current study, involves three main steps: determination of the conditions just prior to the impact (that are considered as initial conditions for the analysis), setting the mechanism of transferring energy from the projectile to the target structure, and determining how that energy is absorbed by the impacted structure. Usually, the dynamics of the projectile are ideally considered, the influence of the fluid presence is restricted to the determination of the impact velocity and strain rate dependency is limited to choosing a true stress vs. strain curve corresponding to some constant strain rate. Starting from the standard engineering approach, the authors have refined the model considering more realistic dynamics of the projectile, extending the influence of the fluid to the entire analysis and using a more accurate strain rate dependant material behavior. Explicit Finite Element analyses are used in order to incorporate the desired effects.

2021 ◽  
Author(s):  
Adanma Akoma ◽  
Kevin Sala ◽  
Chase Sheeley ◽  
Lesley D. Frame

Abstract Determination of flow stress behavior of materials is a critical aspect of understanding and predicting behavior of materials during manufacturing and use. However, accurately capturing the flow stress behavior of a material at different strain rates and temperatures can be challenging. Non-uniform deformation and thermal gradients within the test sample make it difficult to match test results directly to constitutive equations that describe the material behavior. In this study, we have tested AISI 9310 steel using a Gleeble 3500 physical simulator and Digital Image Correlation system to capture transient mechanical properties at elevated temperatures (300°C – 600°C) while controlling strain rate (0.01 s-1 to 0.1 s-1). The data presented here illustrate the benefit of capturing non-uniform plastic strain of the test specimens along the sample length, and we characterize the differences between different test modes and the impact of the resulting data that describe the flow stress behavior.


Author(s):  
Hyunho Shin ◽  
Jong-Bong Kim

The specimen strain rate in the split Hopkinson bar (SHB) test has been formulated based on a one-dimensional assumption. The strain rate is found to be controlled by the stress and strain of the deforming specimen, geometry (the length and diameter) of specimen, impedance of bar, and impact velocity. The specimen strain rate evolves as a result of the competition between the rate-increasing and rate-decreasing factors. Unless the two factors are balanced, the specimen strain rate generally varies (decreases or increases) with strain (specimen deformation), which is the physical origin of the varying nature of the specimen strain rate in the SHB test. According to the formulated strain rate equation, the curves of stress–strain and strain rate–strain are mutually correlated. Based on the correlation of these curves, the strain rate equation is verified through a numerical simulation and experiment. The formulated equation can be used as a tool for verifying the measured strain rate–strain curve simultaneously with the measured stress–strain curve. A practical method for predicting the specimen strain rate before carrying out the SHB test has also been presented. The method simultaneously solves the formulated strain rate equation and a reasonably estimated constitutive equation of specimen to generate the anticipated curves of strain rate–strain and stress–strain in the SHB test. An Excel® program to solve the two equations is provided. The strain rate equation also indicates that the increase in specimen stress during deformation (e.g., work hardening) plays a role in decreasing the slope of the strain rate–strain curve in the plastic regime. However, according to the strain rate equation, the slope of the strain rate–strain curve in the plastic deformation regime can be tailored by controlling the specimen diameter. Two practical methods for determining the specimen diameter to achieve a nearly constant strain rate are presented.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2020
Author(s):  
Baoquan Mao ◽  
Rui Zhu ◽  
Zhiqian Wang ◽  
Yuying Yang ◽  
Xiaoping Han ◽  
...  

To better describe its constitutive relation, we need a new constitutive equation for an important nonlinear elastic material, Mn-Cu damping alloy. In this work, we studied the nonlinear and hysteretic characteristics of the stress-strain curve of the M2052 alloy with the uniaxial cyclic tensile test with constant strain rate. The strain rate and amplitude correlations of M2052 resembled those of nonlinear viscoelastic material. Therefore, we created a new constitutive equation for the M2052 damping alloy by modifying the fractional Maxwell model, and we used the genetic algorithm to carry out numerical fitting with MATLAB. By comparing with the experimental data, we confirmed that the new constitutive equation could accurately depict the nonlinear constitutive relation and hysteretic property of the damping alloy. Taken together, this new constitutive equation for Mn-Cu damping alloy based on the fractional Maxwell model can serve as an effective tool for further studies of the constitutive relation of the Mn-Cu damping alloys.


1980 ◽  
Vol 26 (94) ◽  
pp. 519 ◽  
Author(s):  
H. Singh ◽  
F.W. Smith

Abstract In conducting tension and compression tests on snow samples, strains and strain-rates are usually determined from the displacements of the ends of the samples. In this work, a strain-gage which mounts directly onto the snow sample during testing, was developed and was found to give accurate and direct measurements of strain and strain-rates. A commercially available 0-28 pF variable capacitor was modified to perform the required strain measurements. It is a polished metallic plunger sliding inside a metal-coated glass tube. The plunger and tube were each soldered to the end of a spring-steel wire arm. To the other end of these arms were soldered to 10 mm square pads made of thin brass shim stock. The whole device weighs 2.5 g and the low coefficient of friction in the capacitor resulted in a very low actuation force. To mount the strain gage, the pads are wetted and frozen onto the snow sample. A high degree of sensitivity was achieved through the use of “phase-lock-loop” electronic circuitry. The capacitance change caused by the strain in the sample, changes the frequency of output signal from an oscillator and thus causes the change in output from the system. In the locked state, to which the system is constantly driven by a feed-back loop, the system output is almost ripple free. The strain gages were calibrated in the field in order to take into account the effects of very low field temperatures. The calibration curves were almost linear over the travel of 15 mm, the maximum limit. The sensitivity of the system is 4 mV per strain unit, but this could be increased by an order of magnitude by minor adjustments in the circuit. Constant strain-rate tensile tests were performed on natural snow at Berthoud Pass, Colorado, U.S.A., in the density range of 140-290 kg m-3. Four strain gages were mounted onto the samples to sense any non-uniform deformation which otherwise would have gone unnoticed or caused scatter in the data. The average indication of these gages was used to construct stress—strain curves for various types of snow at different strain-rates. The effect of strain-rate on the behavior of snow was studied. “Ratcheting” in the stress-strain curve in the region where the snow becomes plastic was observed first by Kinosita in his compression tests. A similar phenomenon was observed in these tension tests. It was found that directly measured strain is quite different from that which would be calculated from sample end movement. Strain softening was not observed in these tests up to total strains of 8%. The strain-rate effects found were comparable to the results of other investigators.


2017 ◽  
Vol 892 ◽  
pp. 89-96 ◽  
Author(s):  
Thorsten Henseler ◽  
Madlen Ullmann ◽  
Grzegorz Korpala ◽  
Klaudia Klimaszewska ◽  
Rudolf Kawalla ◽  
...  

This article demonstrates the difference in the flow curves of an AZ31 magnesium alloy and S235JR structural steel wire caused by non-linear strain rates during uniaxial tensile and compression testing at elevated temperatures. Throughout tensile deformation, the traverse velocity of the testing machine has to be adapted according to the current elongation of the specimen, thus accelerating, to ensure a constant strain rate during the admission of the stress-strain curve. The equivalent is necessary during compression testing, where the traverse velocity of the testing machine needs to decelerate ensuring a constant strain rate. Nevertheless, tensile and compression tests are performed with constant traverse velocity, which lead to divergent flow curves in comparison to deformation controlled traverse velocities. The results of the research show the difference in flow behaviour of magnesium and steel wire, when the temperature and strain rate are varied in conjunction with constant and deformation controlled traverse velocities.


MRS Advances ◽  
2018 ◽  
Vol 3 (19) ◽  
pp. 1019-1029 ◽  
Author(s):  
B. Kursten ◽  
S. Caes ◽  
R. Gaggiano

ABSTRACTThe Supercontainer (SC) is the reference concept for the post-conditioning of vitrified high-level nuclear waste and spent fuel in Belgium. It comprises a prefabricated concrete buffer that completely surrounds a carbon steel overpack. Welding is being considered as a final closure technique of the carbon steel overpack in order to ensure its water tightness. Welding is known to induce residual stresses near the weld zone, which may lead to an increased susceptibility to stress corrosion cracking (SCC). In this study, slow strain rate tests were conducted to study the SCC behavior of plain and welded P355 QL2 grade carbon steel exposed to an artificial concrete pore water solution that is representative of the SC concrete buffer environment. The tests were performed at 140°C, a constant strain rate of 5 × 10-7s-1and at open circuit potential under anoxic conditions. The effect of thiosulfate on the SCC behavior was investigated up to levels of 600 mg/L S2O32-.


2011 ◽  
Vol 20 (02) ◽  
pp. 181-232 ◽  
Author(s):  
L. IORIO

We numerically investigate the impact on the two-body range of several Newtonian and non-Newtonian dynamical effects for some Earth-planet (Mercury, Venus, Mars, Jupiter, Saturn) pairs, in view of the expected cm-level accuracy in some future planned or proposed interplanetary ranging operations. The general relativistic gravitomagnetic Lense–Thirring effect should be modeled and solved for in future accurate ranging tests of Newtonian and post-Newtonian gravity, because it falls within their measurability domain. It could a priori "imprint" the determination of some of the target parameters of the tests considered. Moreover, the ring of the minor asteroids, Ceres, Pallas, Vesta (and also many other asteroids if Mars is considered) and the trans-Neptunian objects (TNOs) act as sources of nonnegligible systematic uncertainty on the larger gravitoelectric post-Newtonian signals from which it is intended to determine the parameters γ and β of the parametrized post-Newtonian (PPN) formalism with very high precision (several orders of magnitude better than the current 10-4–10-5levels). Also, other putative, nonconventional gravitational effects, like a violation of the strong equivalence principle (SEP), a secular variation of the Newtonian constant of gravitation G, and the Pioneer anomaly, are considered. The presence of a hypothetical, distant planetary-sized body X could be detectable with future high-accuracy planetary ranging. Our analysis can, in principle, be extended to future interplanetary ranging scenarios in which one or more spacecrafts in heliocentric orbits are involved. The impact of fitting the initial conditions, and of the noise in the observations, on the actual detectability of the dynamical signatures investigated, which may be partly absorbed in the estimation process, should be quantitatively addressed in further studies.


1968 ◽  
Vol 10 (2) ◽  
pp. 153-164 ◽  
Author(s):  
E. Convery ◽  
H. LI. D. Pugh

This paper is concerned with the determination of the velocity of propagation of torsional plastic waves in metals stressed statically into the plastic range. A new method was developed in which a tubular test specimen together with a concentric bar of a brittle material was twisted slowly such that when the specimen was stressed beyond its yield the brittle bar broke suddenly and transmitted a plastic torsional stress increment along the specimen. It was found that the velocity of propagation both in copper and mild steel was the same as the elastic shear wave velocity. Although consistent with the strain-rate dependent theory, the result can be explained in terms of the strain-rate independent theory provided the stress-strain curve for the appropiate strain rate is used.


1980 ◽  
Vol 26 (94) ◽  
pp. 519-519
Author(s):  
H. Singh ◽  
F.W. Smith

AbstractIn conducting tension and compression tests on snow samples, strains and strain-rates are usually determined from the displacements of the ends of the samples. In this work, a strain-gage which mounts directly onto the snow sample during testing, was developed and was found to give accurate and direct measurements of strain and strain-rates.A commercially available 0-28 pF variable capacitor was modified to perform the required strain measurements. It is a polished metallic plunger sliding inside a metal-coated glass tube. The plunger and tube were each soldered to the end of a spring-steel wire arm. To the other end of these arms were soldered to 10 mm square pads made of thin brass shim stock. The whole device weighs 2.5 g and the low coefficient of friction in the capacitor resulted in a very low actuation force. To mount the strain gage, the pads are wetted and frozen onto the snow sample.A high degree of sensitivity was achieved through the use of “phase-lock-loop” electronic circuitry. The capacitance change caused by the strain in the sample, changes the frequency of output signal from an oscillator and thus causes the change in output from the system. In the locked state, to which the system is constantly driven by a feed-back loop, the system output is almost ripple free.The strain gages were calibrated in the field in order to take into account the effects of very low field temperatures. The calibration curves were almost linear over the travel of 15 mm, the maximum limit. The sensitivity of the system is 4 mV per strain unit, but this could be increased by an order of magnitude by minor adjustments in the circuit.Constant strain-rate tensile tests were performed on natural snow at Berthoud Pass, Colorado, U.S.A., in the density range of 140-290 kg m-3. Four strain gages were mounted onto the samples to sense any non-uniform deformation which otherwise would have gone unnoticed or caused scatter in the data. The average indication of these gages was used to construct stress—strain curves for various types of snow at different strain-rates. The effect of strain-rate on the behavior of snow was studied.“Ratcheting” in the stress-strain curve in the region where the snow becomes plastic was observed first by Kinosita in his compression tests. A similar phenomenon was observed in these tension tests. It was found that directly measured strain is quite different from that which would be calculated from sample end movement. Strain softening was not observed in these tests up to total strains of 8%. The strain-rate effects found were comparable to the results of other investigators.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2538
Author(s):  
Dongjie Xue ◽  
Hongwei Zhou ◽  
Jianfeng Liu ◽  
Jie Zhou ◽  
Yintong Liu ◽  
...  

Tests of the effects of uniaxial compression on the structural behavior of fractured coals were conducted. The structural behavior is different from the material behavior of intact samples and the discontinuous behavior based on the block theory. It is a macro response of continuous-discontinuous behavior in coal with varied fracture structure geometry, and includes the material behavior with cracking and contact behavior with sliding. The structural behavior is studied based on the complete stress-strain curve, the material parameters, i.e. elastic modulus, Poisson’s ratio, and compression strength, and the structural integrity parameters, i.e. longitudinal and shear wave velocity, and the physical parameter, i.e. density. All the parameters are compared with the different fracture patterns. Various types of parameter degradation damage are defined to describe the structural characteristics with the different fracture patterns. They shows the effective relation of damage with strength. Furthermore, the mechanisms of the structural modulus degradation, structural failure deformation, and structural strength evolution are discussed. The results show that the post-peak behavior can be defined as the structural behavior. With the structural formation-reloading failure cycle, the mutual conversion changes between structural geometry instability and stability, and the characteristics are stress drops or stress platforms generated by structural rebalance. It is pointed out that the post-peak unloading is a macro response of the structural geometry. It includes the recovery of elastic strain and structural resilience strain, and structural stress drop.


Sign in / Sign up

Export Citation Format

Share Document