scholarly journals Influence of Deformation Controlled Strain Rate on Tensile and Compression Behaviour of Magnesium and Steel Wire

2017 ◽  
Vol 892 ◽  
pp. 89-96 ◽  
Author(s):  
Thorsten Henseler ◽  
Madlen Ullmann ◽  
Grzegorz Korpala ◽  
Klaudia Klimaszewska ◽  
Rudolf Kawalla ◽  
...  

This article demonstrates the difference in the flow curves of an AZ31 magnesium alloy and S235JR structural steel wire caused by non-linear strain rates during uniaxial tensile and compression testing at elevated temperatures. Throughout tensile deformation, the traverse velocity of the testing machine has to be adapted according to the current elongation of the specimen, thus accelerating, to ensure a constant strain rate during the admission of the stress-strain curve. The equivalent is necessary during compression testing, where the traverse velocity of the testing machine needs to decelerate ensuring a constant strain rate. Nevertheless, tensile and compression tests are performed with constant traverse velocity, which lead to divergent flow curves in comparison to deformation controlled traverse velocities. The results of the research show the difference in flow behaviour of magnesium and steel wire, when the temperature and strain rate are varied in conjunction with constant and deformation controlled traverse velocities.

2014 ◽  
Vol 685 ◽  
pp. 11-17
Author(s):  
Yao Jin Wu ◽  
Yong Xue ◽  
Zhi Ming Zhang ◽  
Ya Wei Huang ◽  
Qian Qian Wang ◽  
...  

Al-W alloy billets were produced by powder pressing at room temperature and subsequent hot pressing. Quantities of billets were compressed at constant strain rate and temperature with 60% height reduction on Gleeble-3800 thermal simulation testing machine to study the plastic flow behaviors of the test alloy. The temperature of the compression processes ranged from 450 to 570oC. The strain rate was varied between 0.001 and 1s−1. The regularity of flow stress for the test alloy varied at elevated temperatures was studied. The activation energy during hot deformation is 757.943 kJ/mol by calculated, and the Arrhenius constitutive relation model was established. Keywords: Al-W alloy, powder metallurgy, thermal simulation, constitutive model


1960 ◽  
Vol 13 (2) ◽  
pp. 359 ◽  
Author(s):  
JB Lean

Polycrystalline specimens of a 0�07% C steel were tested in tension at liquid air temperatures. Under particular conditions of temperature and strain rate, following the upper yield point, the recorded stress descended below the lower yield stress then returned to the lower yield stress quasi. elastically thus forming a serration on the stress-strain curve. The magnitude of the serration depended on the difference between the upper and lower yield stresses, on the rigidity of the testing machine employed, and on the applied strain rate.


1941 ◽  
Vol 8 (2) ◽  
pp. A77-A91
Author(s):  
A. Nadai ◽  
M. J. Manjoine

Abstract The authors discuss the results of an investigation on the resistance to plastic forming of several metals over a wide range of rates of deformation at various temperatures. To carry out the tests, two machines were built: One, a high-speed testing machine, was described in Part I of this report; the other, a constant-strain-rate machine, is dealt with in this presentation. The general trend of the test results for aluminum and copper indicates a continuous increase of the yield stresses with the strain rate. The speed relation for pure iron and the iron alloys seems to be much more complicated. The resistance to deformation at a given speed of straining exhibits a minimum and a maximum at certain temperatures. This maximum, known as “blue brittleness,” shifts to higher temperatures with increasing speeds of straining; it appears at 200 C for short-time tension speeds and shifts to 550 C for the high speeds. In the high-speed tests a local temperature rise of 50 C, due to the conversion of the work of deformation into heat, was observed in a specimen of pure iron. At very rapid rates of deformation remarkably high ultimate stresses were found for aluminum and copper when tested at temperatures approaching their melting points. A theory for the necking of a bar, based on the speed law, predicts the observed shapes of broken bars which were drawn down to a point. Observation data are furnished for an evaluation of the forces required for very rapid plastic forming of the metals at high temperatures, particularly through rolling.


1992 ◽  
Vol 114 (4) ◽  
pp. 378-383 ◽  
Author(s):  
G. Ferron ◽  
H. Karmaoui Idrissi ◽  
A. Zeghloul

Constitutive equations based on a state variable modeling of the thermo-viscoplastic behavior of metals are discussed, and incorporated in an exact, long-wavelength analysis of the neck-growth process in uniaxial tension. The general formalism is specialized to the case of f.c.c. metals in the range of intragranular, diffusion controlled plastic flow. The model is shown to provide a consistent account of aluminum behavior both under constant strain-rate and creep. Calculated uniaxial tensile ductilities and rupture lives in creep are also compared with experiments.


Author(s):  
Hyunho Shin ◽  
Jong-Bong Kim

The specimen strain rate in the split Hopkinson bar (SHB) test has been formulated based on a one-dimensional assumption. The strain rate is found to be controlled by the stress and strain of the deforming specimen, geometry (the length and diameter) of specimen, impedance of bar, and impact velocity. The specimen strain rate evolves as a result of the competition between the rate-increasing and rate-decreasing factors. Unless the two factors are balanced, the specimen strain rate generally varies (decreases or increases) with strain (specimen deformation), which is the physical origin of the varying nature of the specimen strain rate in the SHB test. According to the formulated strain rate equation, the curves of stress–strain and strain rate–strain are mutually correlated. Based on the correlation of these curves, the strain rate equation is verified through a numerical simulation and experiment. The formulated equation can be used as a tool for verifying the measured strain rate–strain curve simultaneously with the measured stress–strain curve. A practical method for predicting the specimen strain rate before carrying out the SHB test has also been presented. The method simultaneously solves the formulated strain rate equation and a reasonably estimated constitutive equation of specimen to generate the anticipated curves of strain rate–strain and stress–strain in the SHB test. An Excel® program to solve the two equations is provided. The strain rate equation also indicates that the increase in specimen stress during deformation (e.g., work hardening) plays a role in decreasing the slope of the strain rate–strain curve in the plastic regime. However, according to the strain rate equation, the slope of the strain rate–strain curve in the plastic deformation regime can be tailored by controlling the specimen diameter. Two practical methods for determining the specimen diameter to achieve a nearly constant strain rate are presented.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2020
Author(s):  
Baoquan Mao ◽  
Rui Zhu ◽  
Zhiqian Wang ◽  
Yuying Yang ◽  
Xiaoping Han ◽  
...  

To better describe its constitutive relation, we need a new constitutive equation for an important nonlinear elastic material, Mn-Cu damping alloy. In this work, we studied the nonlinear and hysteretic characteristics of the stress-strain curve of the M2052 alloy with the uniaxial cyclic tensile test with constant strain rate. The strain rate and amplitude correlations of M2052 resembled those of nonlinear viscoelastic material. Therefore, we created a new constitutive equation for the M2052 damping alloy by modifying the fractional Maxwell model, and we used the genetic algorithm to carry out numerical fitting with MATLAB. By comparing with the experimental data, we confirmed that the new constitutive equation could accurately depict the nonlinear constitutive relation and hysteretic property of the damping alloy. Taken together, this new constitutive equation for Mn-Cu damping alloy based on the fractional Maxwell model can serve as an effective tool for further studies of the constitutive relation of the Mn-Cu damping alloys.


2018 ◽  
Vol 183 ◽  
pp. 02011
Author(s):  
Kenji Nakai ◽  
Tsubasa Fukushima ◽  
Takashi Yokoyama ◽  
Kazuo Arakawa

The high strain-rate compressive characteristics of a cross-ply carbon/epoxy laminated composite in the three principal material directions or fibre (1-), in-plane transverse (2-) and throughthickness (3-) directions are investigated on the conventional split Hopkinson pressure bar (SHPB) over a range of temperatures between 20 and 80 °C. A nearly 10 mm thick cross-ply carbon/epoxy composite laminate fabricated using vacuum assisted resin transfer molding (VaRTM) was tested. Cylindrical specimens with a slenderness ratio (= length/diameter) of 0.5 are used in high strain-rate tests, and those with the slenderness ratios of 1.0 and 1.5 are used in low and intermediate strain-rate tests. The uniaxial compressive stress-strain curves up to failure at quasi-static and intermediate strain rates are measured on an Instron testing machine at elevated temperatures. A pair of steel rings is attached to both ends of the cylindrical specimens to prevent premature end crushing in the 1-and 2-direction tests on the Instron testing machine. It is shown that the ultimate compressive strength (or failure stress) exhibits positive strainrate effects and negative temperature ones over a strain-rate range of 10–3 to 103/s and a temperature range of 20 to 80 °C in the three principal material directions.


1980 ◽  
Vol 26 (94) ◽  
pp. 519 ◽  
Author(s):  
H. Singh ◽  
F.W. Smith

Abstract In conducting tension and compression tests on snow samples, strains and strain-rates are usually determined from the displacements of the ends of the samples. In this work, a strain-gage which mounts directly onto the snow sample during testing, was developed and was found to give accurate and direct measurements of strain and strain-rates. A commercially available 0-28 pF variable capacitor was modified to perform the required strain measurements. It is a polished metallic plunger sliding inside a metal-coated glass tube. The plunger and tube were each soldered to the end of a spring-steel wire arm. To the other end of these arms were soldered to 10 mm square pads made of thin brass shim stock. The whole device weighs 2.5 g and the low coefficient of friction in the capacitor resulted in a very low actuation force. To mount the strain gage, the pads are wetted and frozen onto the snow sample. A high degree of sensitivity was achieved through the use of “phase-lock-loop” electronic circuitry. The capacitance change caused by the strain in the sample, changes the frequency of output signal from an oscillator and thus causes the change in output from the system. In the locked state, to which the system is constantly driven by a feed-back loop, the system output is almost ripple free. The strain gages were calibrated in the field in order to take into account the effects of very low field temperatures. The calibration curves were almost linear over the travel of 15 mm, the maximum limit. The sensitivity of the system is 4 mV per strain unit, but this could be increased by an order of magnitude by minor adjustments in the circuit. Constant strain-rate tensile tests were performed on natural snow at Berthoud Pass, Colorado, U.S.A., in the density range of 140-290 kg m-3. Four strain gages were mounted onto the samples to sense any non-uniform deformation which otherwise would have gone unnoticed or caused scatter in the data. The average indication of these gages was used to construct stress—strain curves for various types of snow at different strain-rates. The effect of strain-rate on the behavior of snow was studied. “Ratcheting” in the stress-strain curve in the region where the snow becomes plastic was observed first by Kinosita in his compression tests. A similar phenomenon was observed in these tension tests. It was found that directly measured strain is quite different from that which would be calculated from sample end movement. Strain softening was not observed in these tests up to total strains of 8%. The strain-rate effects found were comparable to the results of other investigators.


Author(s):  
Justin Onisoru ◽  
Ovidiu Coman ◽  
Paul Wilson ◽  
George Thomas

Structural integrity of spent fuel racks is a critical safety issue in nuclear power stations. The standard approach of evaluating the effects of an impact projectile on a submerged structure, which constitute the start point of the current study, involves three main steps: determination of the conditions just prior to the impact (that are considered as initial conditions for the analysis), setting the mechanism of transferring energy from the projectile to the target structure, and determining how that energy is absorbed by the impacted structure. Usually, the dynamics of the projectile are ideally considered, the influence of the fluid presence is restricted to the determination of the impact velocity and strain rate dependency is limited to choosing a true stress vs. strain curve corresponding to some constant strain rate. Starting from the standard engineering approach, the authors have refined the model considering more realistic dynamics of the projectile, extending the influence of the fluid to the entire analysis and using a more accurate strain rate dependant material behavior. Explicit Finite Element analyses are used in order to incorporate the desired effects.


Sign in / Sign up

Export Citation Format

Share Document