Westinghouse Realistic BWR Control Rod Drop Accidents Methodology Using POLCA-T Code

Author(s):  
Dobromir Panayotov

The paper focuses on the activities pursued by Westinghouse in the development and licensing of POLCA-T code Control Rod Drop Accident (CRDA) Methodology. The following aspects of CRDA Methodology are considered: • Parameter Sensitivities based on Phenomena Identification and Ranking Tables (PIRT), • Qualification data base, • Cycle specific analysis, • Limiting initial conditions for transient simulation and CRDA transient simulation, • Sensitivity studies, • Uncertainty analysis and • Estimation of the methodology conservatism. The qualification data base of the methodology consists of single parameter confirmation, separate effects and integral test. It includes the PHOENIX and POLCA7 codes qualifications; POLCA-T qualification against the NEACRP-L-335 3D LWR Core Transient benchmark; simulations of the Peach Bottom EOC 2 Turbine Trip tests and SPERT-IIIE power excursion tests. The comprehensive CRDA methodology that utilizes PHOENIX4/POLCA7/POLCA-T calculation chain foresees complete cycle-specific analysis. The methodology consists of determination of candidates of control rods (CR) that could cause a significant reactivity excursion if dropped throughout the entire fuel cycle, selection of limiting initial conditions for CRDA transient simulation and transient simulation itself. The primary parameter utilized to determine the most limiting rod drop positions and candidates is the dropped control rod incremental reactivity worth. Example of scoping calculations covering three cycle exposures beginning-of-cycle BOC, middle-of-cycle (MOC), and end-of-cycle EOC and reactor states from cold critical to the end of followed CR sequence or up to 10% of rated power are presented. The dynamic response to the dropped control rod and the subsequent consequences to the fuel are evaluated by POLCA-T code. Selection of the limiting initial conditions covers the states along the lower limit of the typical plant startup region. Considered conditions start from 1 bar pressure and 20°C inlet temperature and go up to 70 bar and 274°C. It was observed that there are initial conditions that produce an extreme peak power value. It was also realized that there are initial conditions that produce an extreme peak fuel enthalpy value. Due to the complicated feedback mechanisms those initial conditions are not necessarily the same for the extreme values of the peak power and the fuel enthalpy. The Westinghouse methodology utilizes state-of-the-art methods. Unnecessary conservatisms in the methodology have been avoided to allow the accurate prediction of margin to design bases. This is mainly achieved by using the POLCA-T code for dynamic CRDA evaluations. The code belongs to the same calculation chain that is used for core design. Thus the very same reactor, core, cycle and fuel data base is used. This allows also reducing the uncertainties of input data and parameters that determine the energy deposition in the fuel. Uncertainty treatment, very selective use of conservatisms, selection of the initial conditions for limiting case analyses, incorporation into POLCA-T code models of the licensed fuel performance code are also among the means of performing realistic CRDA transient analyses.

Author(s):  
Kaichao Sun ◽  
Lin-Wen Hu ◽  
Charles Forsberg

The fluoride-salt-cooled high-temperature reactor (FHR) is a new reactor concept, which combines low-pressure liquid salt coolant and high-temperature tristructural isotropic (TRISO) particle fuel. The refractory TRISO particle coating system and the dispersion in graphite matrix enhance safeguards (nuclear proliferation resistance) and security. Compared to the conventional high-temperature reactor (HTR) cooled by helium gas, the liquid salt system features significantly lower pressure, larger volumetric heat capacity, and higher thermal conductivity. The salt coolant enables coupling to a nuclear air-Brayton combined cycle (NACC) that provides base-load and peak-power capabilities. Added peak power is produced using jet fuel or locally produced hydrogen. The FHR is, therefore, considered as an ideal candidate for the transportable reactor concept to provide power to remote sites. In this context, a 20-MW (thermal power) compact core aiming at an 18-month once-through fuel cycle is currently under design at Massachusetts Institute of Technology (MIT). One of the key challenges of the core design is to minimize the reactivity swing induced by fuel depletion, since excessive reactivity will increase the complexity in control rod design and also result in criticality risk during the transportation process. In this study, burnable poison particles (BPPs) made of B4C with natural boron (i.e., 20% B10 content) are adopted as the key measure for fuel cycle optimization. It was found that the overall inventory and the individual size of BPPs are the two most important parameters that determine the evolution path of the multiplication factor over time. The packing fraction (PF) in the fuel compact and the height of active zone are of secondary importance. The neutronic effect of Li6 depletion was also quantified. The 18-month once-through fuel cycle is optimized, and the depletion reactivity swing is reduced to 1 beta. The reactivity control system, which consists of six control rods and 12 safety rods, has been implemented in the proposed FHR core configuration. It fully satisfies the design goal of limiting the maximum reactivity worth for single control rod ejection within 0.8 beta and ensuring shutdown margin with the most valuable safety rod fully withdrawn. The core power distribution including the control rod’s effect is also demonstrated in this paper.


Author(s):  
Jochen Schiewe

AbstractMaps that correctly represent the geographic size and shape of regions, taking into account scaling and generalization, have the disadvantage that small regions can easily be overlooked or not seen at all. Hence, for some map use tasks where small regions are of importance, alternative map types are needed. One option is the so-called equal area unit maps (EAUMs), where every enumeration unit has the same area size, possibly also the same basic shape such as squares or hexagons. The geometrical distortion of EAUMs, however, leads to a more difficult search for regions as well as a falsification of topological relationships and spatial patterns. To describe these distortions, a set of analytical measures is proposed. But it turns out that the expressiveness of these measures is rather limited. To better understand and to model the influence of distortions, two user studies were conducted. The study on the search in EAUMs (also with the aim of reconstruct the search strategies of the users) revealed how important it is to consider the local topology (e.g. corner or border positions of regions) during the generation process. With regard to pattern identification, it could be shown that EAUMs significantly increase the detection rate of local extreme values. On the other hand, global lateral gradients or geostatistical hot spots often get blurred or even lost. As a consequence, a task-oriented selection of map types and further developments are recommended.


1981 ◽  
Vol 55 (3) ◽  
pp. 583-586
Author(s):  
T. N. Ake ◽  
R. G. McAndrew ◽  
D. D. Whitney
Keyword(s):  

Author(s):  
D. A. Sullivan ◽  
P. A. Mas

The effect of inlet temperature, pressure, air flowrate and fuel-to-air ratio on NOx emissions from gas turbine combustors has received considerable attention in recent years. A number of semi-empirical and empirical correlations relating these variables to NOx emissions have appeared in the literature. They differ both in fundamental assumptions and in their predictions. In the present work, these simple NOx correlations are compared to each other and to experimental data. A review of existing experimental data shows that an adequate data base does not exist to evaluate properly the various NOx correlations. Recommendations are proposed to resolve this problem in the future.


Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. V141-V150 ◽  
Author(s):  
Emanuele Forte ◽  
Matteo Dossi ◽  
Michele Pipan ◽  
Anna Del Ben

We have applied an attribute-based autopicking algorithm to reflection seismics with the aim of reducing the influence of the user’s subjectivity on the picking results and making the interpretation faster with respect to manual and semiautomated techniques. Our picking procedure uses the cosine of the instantaneous phase to automatically detect and mark as a horizon any recorded event characterized by lateral phase continuity. A patching procedure, which exploits horizon parallelism, can be used to connect consecutive horizons marking the same event but separated by noise-related gaps. The picking process marks all coherent events regardless of their reflection strength; therefore, a large number of independent horizons can be constructed. To facilitate interpretation, horizons marking different phases of the same reflection can be automatically grouped together and specific horizons from each reflection can be selected using different possible methods. In the phase method, the algorithm reconstructs the reflected wavelets by averaging the cosine of the instantaneous phase along each horizon. The resulting wavelets are then locally analyzed and confronted through crosscorrelation, allowing the recognition and selection of specific reflection phases. In case the reflected wavelets cannot be recovered due to shape-altering processing or a low signal-to-noise ratio, the energy method uses the reflection strength to group together subparallel horizons within the same energy package and to select those satisfying either energy or arrival time criteria. These methods can be applied automatically to all the picked horizons or to horizons individually selected by the interpreter for specific analysis. We show examples of application to 2D reflection seismic data sets in complex geologic and stratigraphic conditions, critically reviewing the performance of the whole process.


Author(s):  
K. Sarabchi ◽  
A. Ansari

Cogeneration is a simultaneous production of heat and electricity in a single plant using the same primary energy. Usage of a cogeneration system leads to fuel energy saving as well as air pollution reduction. A gas turbine cogeneration plant (GTCP) has found many applications in industries and institutions. Although fuel cost is usually reduced in a cogeneration system but the selection of a system for a given site optimally involves detailed thermodynamic and economical investigations. In this paper the performance of a GTCP was investigated and an approach was developed to determine the optimum size of the plant to meet the electricity and heat demands of a given site. A computer code, based on this approach, was developed and it can also be used to examine the effect of key parameters like pressure ratio, turbine inlet temperature, utilization period, and fuel cost on the economics of GTCP.


Sign in / Sign up

Export Citation Format

Share Document