Supercritical Water-Cooled Nuclear Reactors (SCWRs): Current and Future Concepts — Steam Cycle Options

Author(s):  
R. B. Duffey ◽  
I. Pioro ◽  
X. Zhou ◽  
U. Zirn ◽  
S. Kuran ◽  
...  

One of the six Generation IV nuclear reactor concepts is a SuperCritical Water-cooled nuclear Reactor (SCWR), which is currently under development. The main objectives for developing and utilizing SCWRs are to increase the thermal efficiency of Nuclear Power Plants (NPPs), to decrease electrical energy costs, and possibility for co-generation, including hydrogen generation. Atomic Energy of Canada Limited (AECL) and Research and Development Institute of Power Engineering (RDIPE or NIKIET in Russian abbreviations) are currently developing pressure-tube SCWR concepts. The targeted steam parameters at the reactor outlet are approximately 25 MPa and 625°C. This paper presents a survey on modern SuperCritical (SC) steam turbine technology and a study on potential steam cycles for the SCWR plants. The survey reveals that by the time the Gen IV SCWRs are market-ready, the required steam turbine technology will be well proven. Three potential steam cycles in an SCWR plant are presented: a dual-cycle with steam reheat, a direct cycle with steam reheat, and a direct cycle with a Moisture Separator and Reheater (MSR). System thermal-performance simulations have been performed to determine the overall cycle efficiency of the proposed cycles. The results show that the direct cycle with steam reheat has the highest efficiency. The direct cycle with MSR is an alternative option, which will simplify the reactor design at the penalty of a slightly lower cycle efficiency.

Author(s):  
I. Pioro ◽  
M. Naidin ◽  
S. Mokry ◽  
Eu. Saltanov ◽  
W. Peiman ◽  
...  

Currently, there are a number of Generation IV SuperCritical Water-cooled nuclear Reactor (SCWR) concepts under development worldwide. The main objectives for developing and utilizing SCWRs are: 1) Increase gross thermal efficiency of current Nuclear Power Plants (NPPs) from 30–35% to approximately 45–50%, and 2) Decrease capital and operational costs and, in doing so, decrease electrical-energy costs. SuperCritical Water (SCW) NPPs will have much higher operating parameters compared to current NPPs (i.e., steam pressures of about 25 MPa and steam outlet temperatures up to 625°C). Additionally, SCWRs will have a simplified flow circuit in which steam generators, steam dryers, steam separators, etc. will be eliminated. Furthermore, SCWRs operating at higher temperatures can facilitate an economical co-generation of hydrogen through thermo-chemical cycles (particularly, the copper-chlorine cycle) or direct high-temperature electrolysis. To decrease significantly the development costs of an SCW NPP, to increase its reliability, and to achieve similar high thermal efficiencies as the advanced fossil-fired steam cycles, it should be determined whether SCW NPPs can be designed with a steam-cycle arrangement that closely matches that of mature SuperCritical (SC) fossil-fired thermal power plants (including their SC-turbine technology). The state-of-the-art SC-steam cycles at fossil-fired power plants are designed with a single-steam reheat and regenerative feedwater heating. Due to this, they reach thermal steam-cycle efficiencies up to 54% (i.e., net plant efficiencies of up to 43–50% on a Higher Heating Value (HHV) basis). This paper presents several possible general layouts of SCW NPPs, which are based on a regenerative-steam cycle. To increase the thermal efficiency and to match current SC-turbine parameters, the cycle also includes a single steam-reheat stage. Since these options include a nuclear steam-reheat stage, the SCWR is based on a pressure-tube design.


Author(s):  
Alberto Sáez-Maderuelo ◽  
María Luisa Ruiz-Lorenzo ◽  
Francisco Javier Perosanz ◽  
Patricie Halodová ◽  
Jan Prochazka ◽  
...  

Abstract Alloy 690, which was designed as a replacement for the Alloy 600, is widely used in the nuclear industry due to its optimum behavior to stress corrosion cracking (SCC) under nuclear reactor operating conditions. Because of this superior resistance, alloy 690 has been proposed as a candidate structural material for the Supercritical Water Reactor (SCWR), which is one of the designs of the next generation of nuclear power plants (Gen IV). In spite of this, striking results were found [1] when alloy 690 was tested without intergranular carbides. These results showed that, contrary to expectations, the crack growth rate is lower in samples without intergranular carbides than in samples with intergranular carbides. Therefore, the role of the carbides in the corrosion behavior of Alloy 690 is not yet well understood. Considering these observations, the aim of this work is to study the effect of intergranular carbides in the oxidation behavior (as a preliminary stage of degenerative processes SCC) of Alloy 690 in supercritical water (SCW) at two temperatures: 400 °C and 500 °C and 25 MPa. Oxide layers of selected specimens were studied by different techniques like Scanning Electron Microscope (SEM) and Auger Electron Spectroscopy (AES).


Author(s):  
Maria Naidin ◽  
Sarah Mokry ◽  
Farina Baig ◽  
Yevgeniy Gospodinov ◽  
Udo Zirn ◽  
...  

Currently there are a number of Generation IV supercritical water-cooled nuclear reactor (SCWR) concepts under development worldwide. The main objectives for developing and utilizing SCWRs are (1) to increase the gross thermal efficiency of current nuclear power plants (NPPs) from 33–35% to approximately 45–50% and (2) to decrease the capital and operational costs and, in doing so, decrease electrical-energy costs (approximately US$ 1000∕kW or even less). SCW NPPs will have much higher operating parameters compared to current NPPs (i.e., pressures of about 25MPa and outlet temperatures of up to 625°C). Additionally, SCWRs will have a simplified flow circuit in which steam generators, steam dryers, steam separators, etc. will be eliminated. Furthermore, SCWRs operating at higher temperatures can facilitate an economical cogeneration of hydrogen through thermochemical cycles (particularly, the copper-chlorine cycle) or direct high-temperature electrolysis. To decrease significantly the development costs of a SCW NPP and to increase its reliability, it should be determined whether SCW NPPs can be designed with a steam-cycle arrangement that closely matches that of mature supercritical (SC) fossil power plants (including their SC turbine technology). On this basis, several conceptual steam-cycle arrangements of pressure-channel SCWRs, their corresponding T‐s diagrams and steam-cycle thermal efficiencies are presented in this paper together with major parameters of the copper-chlorine cycle for the cogeneration of hydrogen. Also, bulk-fluid temperature and thermophysical properties profiles were calculated for a nonuniform cosine axial heat-flux distribution along a generic SCWR fuel channel, for reference purposes.


Author(s):  
Robert A. Leishear

Requiring further investigation, hydrogen explosions and fires have occurred in several operating nuclear reactor power plants. Major accidents that were affected by hydrogen fires and explosions included Chernobyl, Three Mile Island, and Fukushima Daiichi. Smaller piping explosions have occurred at Hamaoka and Brunsbüttel Nuclear Power Plants. This paper is the first paper in a series of publications to discuss this issue. In particular, the different types of reactors that have a history of fires and explosions are discussed here, along with a discussion of hydrogen generation in commercial reactors, which provides the fuel for fires and explosions in nuclear power plants. Overall, this paper is a review of pertinent information on reactor designs that is of particular importance to this multi-part discussion of hydrogen fires and explosions. Without a review of reactor designs and hydrogen generation, the ensuing technical discussions are inadequately backgrounded. Consequently, the basic designs of pressurized water reactors (PWR’s), boiling water reactors (BWR’s), and pressure-tube graphite reactors (RBMK) are discussed in adequate detail. Of particular interest, the Three Mile Island design for a PWR is presented in some detail.


Author(s):  
M. C. Naidin ◽  
R. Monichan ◽  
U. Zirn ◽  
K. Gabriel ◽  
I. Pioro

Currently, there are a number of Generation IV SuperCritical Water-cooled nuclear Reactor (SCWR) concepts under development worldwide. The main objectives for developing and utilizing SCWRs are: 1) Increase gross thermal efficiency of current Nuclear Power Plants (NPPs) from 30 – 35% to approximately 45 – 50%, and 2) Decrease capital and operational costs and, in doing so, decrease electrical-energy costs. SCW NPPs will have much higher operating parameters compared to current NPPs (i.e., steam pressures of about 25 MPa and steam outlet temperatures up to 625°C). Additionally, SCWRs will have a simplified flow circuit in which steam generators, steam dryers, steam separators, etc. will be eliminated. Furthermore, SCWRs operating at higher temperatures can facilitate an economical co-generation of hydrogen through thermo-chemical cycles (particularly, the copper-chlorine cycle) or direct high-temperature electrolysis. To decrease significantly the development costs of a SCW NPP, to increase its reliability, and to achieve similar high thermal efficiencies as the advanced fossil steam cycles it should be determined whether SCW NPPs can be designed with a steam-cycle arrangement that closely matches that of mature SuperCritical (SC) fossil-fired thermal power plants (including their SC-turbine technology). The state-of-the-art SC-steam cycles at fossil-fired power plants are designed with a single-steam reheat and regenerative feedwater heating. Due to that, they reach thermal steam-cycle efficiencies up to 54% (i.e., net plant efficiencies of up to 43% on a Higher Heating Value (HHV) Basis). This paper analyzes main parameters and performance in terms of thermal efficiency of a SCW NPP concept based on a direct regenerative steam cycle. To increase the thermal efficiency and to match current SC-turbine parameters, the cycle also includes a single steam-reheat stage. The cycle is comprised of: an SCWR, a SC turbine, which consists of one High-Pressure (HP) cylinder, one Intermediate-Pressure (IP) cylinder and two Low-Pressure (LP) cylinders, one deaerator, ten feedwater heaters, and pumps. Since this option includes a “nuclear” steam-reheat stage, the SCWR is based on a pressure-tube design. A thermal-performance simulation reveals that the overall thermal efficiency is approximately 50%.


Author(s):  
Sarah Mokry ◽  
Maria Naidin ◽  
Farina Baig ◽  
Yevgeniy Gospodinov ◽  
Udo Zirn ◽  
...  

Currently there are a number of Generation IV SuperCritical Water-cooled nuclear Reactor (SCWR) concepts under development worldwide. The main objectives for developing and utilizing SCWRs are: 1) To increase gross thermal efficiency of current Nuclear Power Plants (NPPs) from 33–35% to approximately 45–50%, and 2) To decrease the capital and operational costs and, in doing so, decrease electrical-energy costs (∼$1000 US/kW or even less). SCW NPPs will have much higher operating parameters compared to current NPPs (i.e., pressures of about 25 MPa and outlet temperatures up to 625°C). Additionally, SCWRs will have a simplified flow circuit in which steam generators, steam dryers, steam separators, etc. will be eliminated. Furthermore, SCWRs operating at higher temperatures can facilitate an economical co-generation of hydrogen through thermo-chemical cycles (particularly, the copper-chlorine cycle) or direct high-temperature electrolysis. To decrease significantly the development costs of a SCW NPP and to increase its reliability, it should be determined whether SCW NPPs can be designed with a steam-cycle arrangement that closely matches that of mature SuperCritical (SC) fossil power plants (including their SC turbine technology). The state-of-the-art SC steam cycles in fossil power plants are designed with a single-steam reheat and regenerative feedwater heating and reach thermal steam-cycle efficiencies up to 54% (i.e., net plant efficiencies of up to 43% on a Higher Heating Value Basis). It would be beneficial if SCWRs could involve a regenerative feedwater heating and nuclear steam reheat to be able to adapt the current SC turbine technology and to achieve similar high thermal efficiencies as the advanced fossil steam cycles. The nuclear steam reheat is easier to implement inside pressure-tube or pressure-channel reactors compared to pressure-vessel reactors. Atomic Energy of Canada Limited (AECL) and Research and Development Institute of Power Engineering (RDIPE or NIKIET in Russian abbreviations) are currently developing concepts of the pressure-tube SCWRs. Therefore, no-reheat, single-reheat, and double-reheat cycles of future SCW NPPs were analyzed in terms of their thermal efficiencies. On this basis, several conceptual steam-cycle arrangements of pressure-tube SCWRs, their corresponding T-s diagrams and steam-cycle thermal efficiencies are presented in this paper together with major parameters of the copper-chlorine cycle for the co-generation of hydrogen. Also, bulk-fluid temperature and thermophysical properties profiles were calculated for a non-uniform cosine Axial Heat-Flux Distribution (AHFD) along a generic SCWR fuel channel, for reference purposes.


Author(s):  
H. Thind ◽  
I. Pioro ◽  
G. Harvel

At present, there are a number of Generation-IV nuclear reactor concepts under development worldwide, and the SuperCritical Water-cooled nuclear Reactor (SCWR) type is one of them. The main objective of developing SCWRs is to: 1) Increase the thermal efficiency of current Nuclear Power Plants (NPPs) from 30–35% to approximately 45–50%, and 2) Decrease capital and operational costs. SCW NPPs will have much higher operating parameters compared to current NPPs (i.e., pressures of about 25 MPa and outlet temperatures up to 625°C). This paper presents a SCWR single-reheat indirect cycle concept with intermediate heat exchangers. Similar to the current CANDU and Pressurized Water Reactor (PWR) NPPs, heat exchangers separate the primary loop from the secondary loop. In this way, the primary loop can be completely enclosed in the reactor building. The nuclear activities stay within the reactor building, and there is a reduced possibility for radioactive contamination of equipment in the turbine building. As SCW NPPs will have much higher operating thermal hydraulic parameters this paper analyzes the technical challenges and higher costs typically associated with heat exchangers. The double-pipe heat exchanger is analyzed in depth to determine the heat-transfer surface area, number of units and physical dimensions of the heat exchanger. This study will help to determine whether the advantages of the indirect cycle justify implementation of heat exchangers at a SCW NPP.


Author(s):  
Marija Miletic ◽  
Wargha Peiman ◽  
Amjad Farah ◽  
Jeffrey Samuel ◽  
Alexey Dragunov

Nuclear power becomes more and more important in many countries worldwide as a basis for current and future electrical-energy generation. The largest group of operating Nuclear Power Plants (NPPs) equipped with water-cooled reactors (96% of all NPPs) have gross thermal efficiencies ranging from 30% and up to 36%. Such relatively low values of thermal efficiencies are due to lower pressures/temperatures at the inlet to a turbine (4.5–7.8 MPa / 257–293°C). However, modern combined-cycle power plants (Brayton gas-turbine cycle and subcritical-pressure steam Rankine cycle, fuel – natural gas) and supercritical-pressure coal-fired power plants have reached gross thermal efficiencies of 62% and 55%, respectively. Therefore, next generation or Generation IV NPPs with water-cooled reactors should have thermal efficiencies as close as possible to those of modern thermal power plants. A significant increase in thermal efficiencies of water-cooled NPPs can be possible only due to increasing turbine inlet parameters above the critical point of water, i.e., SuperCritical Water-cooled Reactors (SCWRs) have to be designed. This path of the thermal-efficiency increasing is considered as a conventional way through which coal-fired power plants gone more than 50 years ago. Therefore, an objective of the current paper is a study on neutronics and thermalhydraulics characteristics of a generic 1200-MWel Pressure-Channel (PCh) SCWR. Standard neutronics codes DRAGON and DONJON have been coupled with a new thermalhydraulic code developed based on the latest empirical heat-transfer correlation, which allowed for more accurate estimation of basic characteristics of a PCh SCWR. In addition, the CFD Fluent code has been used for better understanding of specifics of heat transfer in supercritical water. Future studies will be dedicated to materials and fuels testing in an in-pile supercritical-water loop and developing passive-safety systems.


2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Marija Miletic ◽  
Wargha Peiman ◽  
Amjad Farah ◽  
Jeffrey Samuel ◽  
Alexey Dragunov ◽  
...  

Nuclear power becomes more and more important in many countries worldwide as a basis for current and future electrical energy generation. The largest group of operating nuclear power plants (NPPs) equipped with water-cooled reactors (96% of all NPPs) has gross thermal efficiencies ranging from 30–36%. Such relatively low values of thermal efficiencies are due to lower pressures/temperatures at the inlet to a turbine (4.5–7.8  MPa/257–293°C). However, modern combined-cycle power plants (Brayton gas-turbine cycle and subcritical-pressure steam Rankine cycle, fueled by natural gas) and supercritical-pressure coal-fired power plants have reached gross thermal efficiencies of 62% and 55%, respectively. Therefore, next generation or Generation IV NPPs with water-cooled reactors should have thermal efficiencies as close as possible to those of modern thermal power plants. A significant increase in thermal efficiencies of water-cooled NPPs can be possible only due to increasing turbine inlet parameters above the critical point of water, i.e., supercritical water-cooled reactors (SCWRs) have to be designed. This path of increasing thermal efficiency is considered as a conventional way that coal-fired power plants followed more than 50 years ago. Therefore, an objective of the current paper is a study on neutronics and thermalhydraulics characteristics of a generic 1200-MWel pressure-channel (PCh) SCWR. Standard neutronics codes DRAGON and DONJON have been coupled with a new thermalhydraulics code developed based on the latest empirical heat-transfer correlation, which allowed for more accurate estimation of basic characteristics of a PCh SCWR. In addition, the computational fluid dynamics (CFD) Fluent code has been used for better understanding of the specifics of heat transfer in supercritical water. Future studies will be dedicated to materials and fuels testing in an in-pile supercritical water loop and developing passive safety systems.


Sign in / Sign up

Export Citation Format

Share Document