Study on the Prestressing Effect in Reinforced Concrete Containment by Using ANSYS

Author(s):  
Feng Sun ◽  
Rong Pan

Prestressed reinforced concrete containment is an important part among the safety-related buildings, and the presressing technology is widely used in containment construction which is best suited to the cylindrical-type containment topped by a dome. It has been recognized that traditional methods for analysis of containment prestressing system have been unable to satisfy more accurate design, research and monitoring requirements. Prestressing tendons are placed complexly in containment structure, especially near the major equipment hatch area, which is the three-dimensional curve and the friction loss must be considered. Firstly, containment structure and the distribution of prestresseing system are introduced briefly. Furthermore, the calculating process of prestressing tendons losses is put forward in details which take the major equipment hatch as an example. Solid65 element and constitutive model of concrete in ANSYS are introduced in details, and the characteristic of simulating prestressing tendons in ANSYS is analyzed. Based above study, finite element model of the prestressed structure is built based on some concrete containment by using ANSYS program, the prestressing effect on concrete containment is put forward. The numerical results show that most of the design pressure is beared by the prestressing system under the design-basis pressure condition, and the simulation method is effective with a high accuracy which agrees well with stress tests performed on-site in some operating NPPs such as LINGAO PHASE II.

Author(s):  
Hao Gong ◽  
Jianhua Liu ◽  
Xiaoyu Ding

An understanding of conditions that trigger the loosening of bolted joints is essential to ensure joint reliability. In this study, a three-dimensional finite element model of a typical bolted joint is developed, and a new simulation method is proposed to quantitatively identify the critical transverse force for initiating loosening. This force is used to evaluate the anti-loosening capacity of bolted joints. Using the proposed simulation method, the effects of factors affecting critical loosening are systematically studied. It is found that the preload, frictional coefficients at the thread and the bearing surfaces, clamped length, and fit tolerance mainly affected loosening. When the preload and friction coefficients are increased, and the clamped length and fit tolerance are reduced, loosening is inhibited. Experiments are performed to demonstrate the reliability of the results. Finally, a suggestion is proposed to improve the design guideline VDI 2230 for bolted joints, which considers the requirement of avoiding loosening under vibrational loading.


Author(s):  
Feng Gao ◽  
Yonghua Xiong ◽  
Lei Tian ◽  
Farong Du ◽  
Guoyan Xu

The three-dimensional geometric model of the fringe-beam frame had been built based on the frame structure of a light truck. In order to optimize the frame structure, the finite element model of the frame and the suspension system were set up. Considering the influence of suspension on frame dynamic performance, the modal properties of the frame model was analyzed in the commercial analysis program ANSYS, using two different methods. Based on the experiments, it was verified that combining MPC184 elements and spring elements Combin14 is a better way to simulate suspension compared to using spring finite elements only. Furthermore, the combined simulation results coincide with experimental modal analysis results, which were conducted thereafter. Subsequently, the frame stress-strain distribution rules and dynamics response were calculated under the random road spectrum excitation, and the frame dynamic parameters were obtained. This study provides some theoretical bases for frame structure improvement, and proposes an optimum method to simulate suspension. The results have direct significance in ensuring the stability, comfort and reliability of a light truck frame.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 603 ◽  
Author(s):  
Xiaohui Cui ◽  
Zhiwu Zhang ◽  
Hailiang Yu ◽  
Xiaoting Xiao ◽  
Yongqi Cheng

A three-dimensional (3D) finite-element model (FEM), including quasi-static stamping, sequential coupling for electromagnetic forming (EMF) and springback, was established to analyze the springback calibration by electromagnetic force. Results show that the tangential stress at the sheet bending region is reduced, and even the direction of tangential stress at the bending region is changed after EMF. The springback can be significantly reduced with a higher discharge voltage. The simulation results are in good agreement with the experiment results, and the simulation method has a high accuracy in predicting the springback of quasi-static stamping and electromagnetic forming.


Author(s):  
Sayyed Behzad Abdellahi ◽  
Sayyed Mahdi Hejazi ◽  
Hossein Hasani

Thermal behavior such as heat transfer is an important parameter for construction composites. Three-dimensional textile reinforced concrete (TRC) is one of the construction composites which is recently being used in the building industry. Therefore, in this study, the thermal behavior of three different TRC samples was investigated by a heat transfer test using an infrared method. The cementitious matrix was reinforced by 3D fabric with three different spacer yarn orientation angles. The cementitious matrix was fabricated by cement and waste stone powder. The TRC sample was put on the hot plate of the heat transfer apparatus and the temperature variations of the top surface of the sample were obtained. According to the test results, increasing the orientation angle of spacer yarns leads to a decrease in the thermal conductivity of the TRC sample and reduces heat transfer. On the other hand, a theoretical model was used to calculate the thermal conductivity and resistance coefficients of sandwich samples. Furthermore, a 3D finite element model was used to predict the heat transfer of TRC specimens. A unit cell of the TRC model was created in Abaqus software and finite element (FE) analysis was carried on a created model. Thermal conductivity and thermal resistance of samples according to FE results were calculated and compared with experimental results. FE results showed good agreement with the experimental data.


Author(s):  
Seong-Min Kim ◽  
Moon C. Won ◽  
B. Frank McCullough

Continuously reinforced concrete pavement (CRCP) performance depends primarily on early-age cracks that result from changes in temperature and drying shrinkage. Presented is the behavior of the CRCP due to the temperature change obtained by using a three-dimensional finite element model. The nonlinear effects of the bond-slip between concrete and steel and between concrete and base have been studied. Modeling for the curling effect and for the viscoelastic material characteristics also has been considered. The results from the two-dimensional and three-dimensional models have been compared to verify the possibility of using a two-dimensional model. From this study, it was found that crack width and concrete stress are dependent on the transverse steel arrangement near the edge (longitudinal joint), but they are almost independent in the interior of the slab. The tensile stress occurring at the top of the edge on the transverse steel location can be higher than that occurring at the top of the slab center. This represents the possibility of forming a transverse crack from the edge on the transverse steel location. The twodimensional model with the plane stress element gives results very close to those of the three-dimensional model, except near the edge.


2012 ◽  
Vol 588-589 ◽  
pp. 203-207
Author(s):  
Chi Yun Zhao ◽  
Hua Li ◽  
Li Yun Li

The nonlinear behavior of the full scale test of the composite joint between steel reinforced concrete beam and concrete filled steel tubular column under low cyclic reversed loading are simulated by using finite element software ANSYS. A separated model was used, element concrete solid 65, element shell 181 and element link 8 were used to model concrete material, steel members and steel bars respectively. The numerical analysis results are compared with the data of the experimental research. The advantages and shortcoming of the finite element model are given. A better numerical simulation method and a use for reference to the similar case are expected to be afforded.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 57
Author(s):  
Marco Gaetani d’Aragona ◽  
Maria Polese ◽  
Andrea Prota

Masonry-infilled reinforced concrete frames represent a very common construction typology across the Mediterranean countries. The presence of infills substantially modifies the global seismic performances of buildings in terms of strength, stiffness, and energy dissipation. Although several research studies focused on the overall performances of infilled reinforced concrete frames, the modeling of infill panels remains an open issue due to the complex interaction between the infill and the frame and the uncertainties involved in the definition of the problem. In the present paper, an existing masonry-infilled RC frame designed according to obsolete seismic codes is chosen as a case study. A refined three-dimensional finite element model is built for performing nonlinear static and time-history analyses in order to investigate some significant aspects related to the modeling of infills. In particular, it is investigated the effect of different infill constitutive models on the seismic performance of infilled RC building expressed in terms of engineering demand parameters such as interstory drift ratios and peak floor accelerations, and on the generation of damage fragility curves.


2019 ◽  
Vol 5 (11) ◽  
pp. 2349-2358
Author(s):  
Ali Sabah Al Amli ◽  
Nadhir Al-Ansari ◽  
Jan Laue

Nonlinear analysis for reinforced concrete members (R.C.) with two types of bars also with unsaturated and saturated soils was used to represent the models. To control the corrosion in the steel bar that used in R.C. member and decrease the cost, the geogrid with steel bar reinforcement are taken in this study to determine the effect of load-deflection and stress-strain relationships. The finite element method is used to model the R.C. member, bars and soil. A three-dimensional finite element model by ABAQUS version 6.9 software program is used to predict the load versus deflection and stress versus strain response with soil. The results for the model in this study are compared with the experimental results from other research, and the results are very good. Therefore, it was concluded that the models developed in this study can accurately capture the behavior and predict the load-carrying capacity of such R.C. members with soil and the maximum stresses with strains. The results show plastic strain values in the R.C. member with saturated soil are larger than their values in unsaturated soil about (54%, 58%, and 55% and 52%) when the geogrid ratios are (without geogrid, 60%, 40% and 20%) respectively, with the same values of stresses.


2021 ◽  
Vol 8 (5) ◽  
pp. 716-738
Author(s):  
Yamen Ibrahim Elbahy ◽  
◽  
Maged A. Youssef ◽  
M. Meshaly ◽  
◽  
...  

<abstract> <p>The unique properties of Shape Memory Alloys (SMAs) have motivated researchers to use them as primary reinforcement in reinforced concrete (RC) structures. In this study, the applicability of using external unbonded SMA bars to retrofit RC beam-column joints (BCJs) is investigated. A three-dimensional finite element model, which simulates the suggested retrofitting technique, is first developed, and validated using ABAQUS software. The model is then further simplified and utilized to conduct a parametric study to investigate the behaviour of SMA retrofitted RC BCJs. Results of the parametric study are used to perform multiple linear regression analysis. Simple equations, which can be used to calculate the length and amount of SMA bars required to retrofit a RC BCJ, are then developed.</p> </abstract>


Sign in / Sign up

Export Citation Format

Share Document