Numerical Simulation of Single Bubble Moving in Stagnant Solid-Liquid Mixture Pool Using Finite Volume Particle Method

Author(s):  
Yuki Aramaki ◽  
Takahito Suzuki ◽  
Ichiro Miya ◽  
Liancheng Guo ◽  
Koji Morita

Three-phase flow formed in a disrupted core of nuclear reactors is one of the key phenomena to be simulated in reactor safety analysis. Particle-based simulation could be a powerful CFD tool to understand and clarify local thermal-hydraulic behaviors involved in such three-phase flows. In the present study, to develop a computational framework for three-phase flow simulations, a single bubble moving in a stagnant solid particle-liquid mixture pool was simulated using the finite volume particle (FVP) method. The simulations were carried out in a two dimensional system. The bubble shape change and the bubble rise velocity were compared with the newly performed experiments, which used solid particulate glasses of 0.9 mm in diameter, liquid silicone and air. The two-phase flow simulation of a single bubble rising in a stagnant liquid pool reproduced measured bubble shape and bubble rise velocity reasonably. On the other hand, the bubble rise velocity in a stagnant particle-liquid mixture pool was overestimated in comparison with the measurement. This result suggests that particle-particle and particle-fluid interactions would have dominant influence on bubble motion behavior in the particle-liquid mixture pool under the present multiphase conditions. To evaluate such interactions in the simulations, the particle-particle interactions were modeled by the distinct element method (DEM), while two models were applied to represent particle-fluid interactions. One is the theoretical model for apparent viscosity of particle-liquid mixture, which describes the viscosity increase of liquid mixed with solids based on the Frankel-Acrivos equation. The other is the drag force model for solid-fluid interactions. In the present study, we took the Gidaspow drag correlation, which is a combination of the Ergun equation and Wen-Yu equation. A comparison of both the transient bubble shape and bubble rise velocity between the results of experiment and simulation demonstrates that the present computational framework based on the FVP method and solid-phase interaction models is useful for numerical simulations of a single bubble moving in a stagnant solid particle-liquid mixture pool.

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2077
Author(s):  
Guishan Ren ◽  
Dangke Ge ◽  
Peng Li ◽  
Xuemei Chen ◽  
Xuhui Zhang ◽  
...  

A series of experiments were conducted to investigate the flow pattern transitions and water holdup during oil–water–gas three-phase flow considering both a horizontal section and a vertical section of a transportation pipe simultaneously. The flowing media were white mineral oil, distilled water, and air. Dimensionless numbers controlling the multiphase flow were deduced to understand the scaling law of the flow process. The oil–water–gas three-phase flow was simplified as the two-phase flow of a gas and liquid mixture. Based on the experimental data, flow pattern maps were constructed in terms of the Reynolds number and the ratio of the superficial velocity of the gas to that of the liquid mixture for different Froude numbers. The original contributions of this work are that the relationship between the transient water holdup and the changes of the flow patterns in a transportation pipe with horizontal and vertical sections is established, providing a basis for judging the flow patterns in pipes in engineering practice. A dimensionless power-law correlation for the water holdup in the vertical section is presented based on the experimental data. The correlation can provide theoretical support for the design of oil and gas transport pipelines in industrial applications.


Author(s):  
Tomio Okawa ◽  
Tomoe Tanaka ◽  
Kazuhiro Torimoto ◽  
Masanori Nishiura ◽  
Isao Kataoka

The effects of liquid temperature and injection method on single bubble rise characteristics in clean still water were experimentally investigated. It was confirmed that the shape and rise velocity of a bubble strongly depend on the method of bubble formation. For the rise velocity in high temperature water, the correlation for fully contaminated liquid might be appropriate even in the clean water. Because of the importance in the numerical simulation of bubbly two-phase flow, the experimental information on rise path oscillation such as amplitude and frequency was also reported.


1992 ◽  
Vol 32 (1-2) ◽  
pp. 3-23 ◽  
Author(s):  
D.A. Deshpande ◽  
M.D. Deo ◽  
F.V. Hanson

Sign in / Sign up

Export Citation Format

Share Document