Benchmarking the NEM Real-Time Core Model for VVER-1000 Simulator Application: Asymmetric Core

Author(s):  
Emiliya Georgieva ◽  
Yavor Dinkov ◽  
Kostadin Ivanov ◽  
Robert Stieglitz

A real-time version of the Nodal Expansion Method (NEM) code is developed and implemented into Kozloduy 6 full-scope replica control room simulator. Combined with an enhanced thermal-hydraulics and I&C models the whole package is a high-fidelity simulation tool for operator training and various other applications. The fidelity and accuracy of simulation with emphasis on reactor core model is illustrated through comparison with plant-specific data. The transient of ‘Switching-off of One of the Four Operating Main Circulation Pumps at Nominal Reactor Power’ as described in OECD/NEA Kalinin 3 Coolant Transient Benchmark is an example of an asymmetric core scenario with a range of parameter changes. Simulation results concerning fuel assembly power and axial power distribution during the transient are compared with records from Kalinin 3 in-core monitoring system. Main operating parameters of nuclear steam supply system of a VVER-1000/V320 series units vary to a considerable degree. While Kalinin 3 benchmark specification contains very good description of the transient, as well as record of many parameters of the unit, the document provides only superfluous description of the reference unit. In such a case, an approach based on a ‘generic’ V320 model by default introduces deviations which are difficult to quantify. There are several examples which warrant discussion. One example is core coolant flow and pressure loss during the transient. Pump head and pressure loss across reactor vessel are measured and recorded and in-core monitoring system provides estimation of core coolant flow, which is quite high in comparison with some other V320 units (e.g. by about 5 % larger). Without more detailed pressure loss data across the main circulation loop and specific pump characteristics, however, one can only guess how much simulation is off the mark. Another detail of the same problem is coolant flow through a specific fuel assembly. The presence of a fuel assembly of different design (TVS-M type) surrounded by TVSA type fuel assemblies shall be thoroughly considered, because secondary sources indicate significant differences in fuel assembly pressure loss coefficients between the two types. Coolant flow affects coolant (and fuel) temperature profile and thus neutron cross-sections. Yet another example, even more strongly affecting our ability to interpret simulation results is core power reconstruction provided by the in-core monitoring system of the unit. The SPND (Self-Powered Neutron Detector) current readings are subject of conversion by an algorithm based upon simulated spatial neutron flux distribution across the reactor core. While error estimation of the parameters in stationary conditions is available from secondary sources, there is no reliable estimation of error magnitude during the transient.

1990 ◽  
pp. 159-169
Author(s):  
Jean Koclas ◽  
F. Friedman ◽  
C. Paquette ◽  
P. Vivier

2017 ◽  
Vol 3 (3) ◽  
Author(s):  
Emiliya Georgieva ◽  
Yavor Dinkov ◽  
Kostadin Ivanov

The aim of this paper is to summarize authors' experience in adaptation of an existing plant-specific VVER-1000/V320 model for simulation of a rare example of a Kalinin 3 nuclear power plant (NPP) transient of “switching-off of one of the four operating main circulation pumps at nominal reactor power” with an asymmetric core configuration. The fidelity and accuracy of simulation with emphasis on reactor core model is illustrated through comparison with plant-specific data. Simulation results concerning fuel assembly (FA) power and axial power distribution during the transient are compared with records from Kalinin 3 in-core monitoring system (ICMS). Main operating parameters of nuclear steam supply system of a VVER-1000/V320 series units vary to a considerable degree. While Kalinin 3 benchmark specification contains very good description of the transient, as well as record of many parameters of the unit, the document provides only superficial description of the reference unit. In such a case, an approach based on a “generic” V320 model by default introduces deviations which are difficult to quantify. There are several examples which warrant discussion. Some of the most important lessons learned are as follows. (1) individual characteristics of all the main circulation pumps and the reactor coolant loops are quite important for the quality of simulation and should be accounted for in the model; (2) variations in fuel assembly characteristics should be accounted for not only in terms of macroscopic cross section library but also in terms of local pressure loss coefficients and mixing factors in the case of mixed core loads; (3) comprehensive plant-specific model of dynamic response of instrumentation and control (I&C) systems is a necessity; dynamic characteristics of individual measurement channels (nuclear instrumentation, pressure, temperature) should be accounted for; and (4) comprehensive plant-specific model of balance-of-plant equipment, instrumentation, and control is a necessity. Above requirements impose a difficult task to comply with. Nevertheless, any individual nuclear power unit is supposed to maintain a detailed design database and data requirements for plant-specific model development should be considered.


2008 ◽  
Vol 2008 ◽  
pp. 1-9
Author(s):  
Algirdas Kaliatka ◽  
Eugenijus Uspuras ◽  
Virginijus Vileiniskis

Eight main circulation pumps (MCPs) are employed for the cooling of water forced circulation through the RBMK-1500 reactor at the Ignalina nuclear power plant (NPP). These pumps are joined into groups of four pumps each (three for normal operation and one on standby). In the case of all MCPs trip, the reactor shutdown system is activated due to decrease of coolant flow rate. At the same time, after the pump trip, the coolant to the reactor fuel channels during the first few seconds is supplied by pump coastdown. Later, the reactor is cooled by natural circulation. The main question arises whether this coolant flow rate is sufficient to remove the decay heat from the reactor core. This paper presents the investigation of all MCPs trip events at the Ignalina NPP by employing best estimate code RELAP5 and methodology of uncertainty and sensitivity analysis.


2015 ◽  
Vol 1 (1) ◽  
pp. 37-45
Author(s):  
Irwansyah Irwansyah ◽  
Hendra Kusumah ◽  
Muhammad Syarif

Along with the times, recently there have been found tool to facilitate human’s work. Electronics is one of technology to facilitate human’s work. One of human desire is being safe, so that people think to make a tool which can monitor the surrounding condition without being monitored with people’s own eyes. Public awareness of the underground water channels currently felt still very little so frequent floods. To avoid the flood disaster monitoring needs to be done to underground water channels.This tool is controlled via a web browser. for the components used in this monitoring system is the Raspberry Pi technology where the system can take pictures in real time with the help of Logitech C170 webcam camera. web browser and Raspberry Pi make everyone can control the devices around with using smartphone, laptop, computer and ipad. This research is expected to be able to help the users in knowing the blockage on water flow and monitored around in realtime.


2014 ◽  
Author(s):  
Rozaimi Ghazali ◽  
◽  
Asiah Mohd Pilus ◽  
Wan Mohd Bukhari Wan Daud ◽  
Mohd Juzaila Abd Latif ◽  
...  

Author(s):  
Jia Hua-Ping ◽  
Zhao Jun-Long ◽  
Liu Jun

Cardiovascular disease is one of the major diseases that threaten the human health. But the existing electrocardiograph (ECG) monitoring system has many limitations in practical application. In order to monitor ECG in real time, a portable ECG monitoring system based on the Android platform is developed to meet the needs of the public. The system uses BMD101 ECG chip to collect and process ECG signals in the Android system, where data storage and waveform display of ECG data can be realized. The Bluetooth HC-07 module is used for ECG data transmission. The abnormal ECG can be judged by P wave, QRS bandwidth, and RR interval. If abnormal ECG is found, an early warning mechanism will be activated to locate the user’s location in real time and send preset short messages, so that the user can get timely treatment, avoiding dangerous occurrence. The monitoring system is convenient and portable, which brings great convenie to the life of ordinary cardiovascular users.


Vestnik MEI ◽  
2019 ◽  
Vol 5 ◽  
pp. 11-23
Author(s):  
Konstantin N. Proskuryakov ◽  

Sign in / Sign up

Export Citation Format

Share Document