Performance Analysis of Eductor Used for Main Control Room Ventilating in Nuclear Power Plant

Author(s):  
Xin Yu ◽  
Yuqing Lin ◽  
Yan Zhang

This paper proposes the experimental research for the performance of the air eductor used in main control room (MCR). The air eductor is used for emergency ventilating in advanced passive pressurized water reactor in accident. The compress air is supplied to the eductor as a power source and the indoor air is suctioned to the eductor. The performance of the eductor is related to the habitability of MCR. The entrainment ratio and the air pressure of discharge side are the main concerned performance. The entrainment ratio is a value that resulted from the compress air flow rate divided by the suction air flow rate. A test system was set up to test the performance of eductor. The experimental results show that the entrainment ratio of rectangle nozzle with compress air pressure 0.76MPa, 0.80MPa and 0.83MPa were 15.02, 15.04 and 15.06, respectively.

Author(s):  
V Sureshkannan ◽  
TV Arjunan ◽  
D Seenivasan ◽  
SP Anbuudayasankar ◽  
M Arulraj

Compressed air free from traces of water vapour is vital in many applications in an industrial sector. This study focuses on parametric optimization of a pressure-based packed bed adsorption system for air dehumidification through the Taguchi method and Genetic Algorithm. The effect of operational parameters, namely absolute feed air pressure, feed air linear velocity, and purge air flow rate percent on adsorption uptake rate of molecular sieve 13X-water pair, are studied based on L25 orthogonal array. From the analysis of variance, it has been found that absolute feed air pressure and purge air flow rate percent were the parameters making significant improvement in the adsorption uptake rate. A correlation representing the process was developed using regression analysis. The optimum adsorption conditions were obtained through the Taguchi method and genetic algorithm and verified through the confirmation experiments. This system can be recommended for the industrial and domestic applications that require product air with the dew point temperature below 0°C.


1995 ◽  
Vol 32 (5) ◽  
pp. 382-389 ◽  
Author(s):  
Takashi Tachimura ◽  
Hisanaga Hara ◽  
Takeshi Wada

This study was designed to determine if levator veli palatini muscle activity can be elicited by simultaneous changes in oral air pressure and nasal air flow when a speech appliance is in place. The speech appliances routinely worn by 15 subjects were each modified experimentally by drilling a hole in the vertical center of the pharyngeal bulb. The air flow rate into the nasal cavity through the opening in the bulb was altered by changing the circular area of the opening in the bulb from the occluded condition (Condition I), to circular area of 12.6 mm2 (4 mm in diameter; Condition II), and then to 38.5 mm2 (7 mm in diameter; Condition III). Electromyographic activity was measured from the levator veli palatini muscle with changes in nasal air flow rate and oral air pressure. Levator veli palatini muscle activity was correlated with changes in nasal air flow and oral air pressure. Increases in levator veli palatini muscle activity were associated with increases in nasal air flow rate compared to oral air pressure changes. The results indicated that aerodynamic variables of nasal air flow and oral air pressure might be involved in the neural control of speech production in individuals wearing a speech appliance, even if the subjects exhibit velopharyngeal incompetence without using a speech appliance. Also, the stimulating effect of bulb reduction therapy on velopharyngeal function might be achieved through the change in aerodynamic variables in association with the bulb reduction.


1983 ◽  
Vol 1983 (1) ◽  
pp. 33-38
Author(s):  
Keith F. Kruk

ABSTRACT The use of an curtain incinerator to dispose of materials recovered from an oil spill was investigated for the Alaskan Beaufort Sea Oilspill Response Body (ABSORB). A series of combustion experiments was conducted in a prototype incinerator 10 feet wide by 10 feet long by 14 feet high. Combustion rates, emissions, and temperatures were monitored during the experiments. Operating variables investigated included air flow rate, direction of air into the combustion chamber, waste feed rate, water spray over the combustion zone, and the slant of the combustion chamber's front wall. Some of the major results were:Optimum air flow rate into the incinerator is 7,000 cubic feet per minute.The system performed satisfactorily at combustion rates exceeding 600 barrels per day.At 600 bbl/day, most emulsions burned with emissions less than 1 Ringelmann.Oil with 20-to-30 percent water burned most efficiently.Oil-saturated straw was consistently burned in the incinerator at measured emission levels of less than 1 Ringelmann.Combustion temperatures in the incinerator will exceed 2,000°F with an 18,500-Btu-per-pound oil. Included in this paper are details of the test system, results of combustion tests, and recommended design criteria for an arctic system.


2020 ◽  
Vol 124 (1278) ◽  
pp. 1170-1189
Author(s):  
C. Cai ◽  
L. Guo ◽  
J. Liu

ABSTRACTThe gas temperature of the supersonic heat airflow simulated test system is mainly determined by the fuel and air flow rates which enter the system combustor. In order to realise a high-quality control of gas temperature, in addition to maintaining the optimum ratio of fuel and air flow rates, the dynamic characteristics of them in the combustion process are also required to be synchronised. Aiming at the coordinated control problem of fuel and air flow rates, the mathematical models of fuel and air supply subsystems are established, and the characteristics of the systems are analysed. According to the characteristics of the systems and the requirements of coordinated control, a fuzzy-PI cross-coupling coordinated control strategy based on neural sliding mode predictive control is proposed. On this basis, the proposed control algorithm is simulated and experimentally studied. The results show that the proposed control algorithm has good control performance. It cannot only realise the accurate control of fuel flow rate and air flow rate, but also realise the coordinated control of the two.


Author(s):  
Андрей Евгеньевич Скугаров ◽  
Светлана Анатольевна Микаева

В статье описаны датчики массового расхода воздуха. Авторы приводят типы различных конструкций, принцип действия и способы определения расхода воздуха. В основе конструкции датчика лежит трубка Пито и закреплённая пластина, которая деформируется под давлением воздуха. The article describes the sensors of mass air flow.The authors give the types of various structures, the principle of operation and methods for determining the air flow rate. The sensor design is based on a Pitot tube and a fixed plate that deforms under air pressure.


Fluids ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 248
Author(s):  
Tran Minh Duc ◽  
Tran The Long ◽  
Ngo Minh Tuan

Machining difficult-to-cut materials is one of the increasingly concerned issues in the metalworking industry. Low machinability and high cutting temperature generated from the contact zone are the main obstacles that need to be solved in order to improve economic and technical efficiency but still have to ensure environmental friendliness. The application of MQL method using nano cutting fluid is one of the suggested solutions to improve the cooling and lubricating performance of pure-MQL for machining difficult-to-cut materials. The main objective of this paper is to investigate the effects of nanofluid MQL (NFMQL) parameters including the fluid type, type of nanoparticles, air pressure and air flow rate on cutting forces and surface roughness in hard milling of 60Si2Mn hardened steel (50–52 HRC). Analysis of variance (ANOVA) was implemented to study the effects of investigated variables on hard machining performance. The most outstanding finding is that the main effects of the input variables and their interaction are deeply investigated to prove the better machinability and the superior cooling lubrication performance when machining under NFMQL condition. The experimental results indicate that the uses of smaller air pressure and higher air flow rate decrease the cutting forces and improve the surface quality. Al2O3 nanoparticles show the better results than MoS2 nanosheets. The applicability of soybean oil, a type of vegetable oil, is proven to be enlarged in hard milling by suspending nanoparticles, suitable for further studies in the field of sustainable manufacturing.


Sign in / Sign up

Export Citation Format

Share Document