Study on the Application of CDAG Methodology in EPR Nuclear Power Plant

Author(s):  
Yin Yuhao ◽  
Huang Yichao ◽  
Zhao Feng

The Westinghouse Owners Group Core Damage Assessment Guidance (CDAG), which has been authorized by the NRC staffs, is now used by licensee emergency response organization staff for estimating the extent of core damage that may have occurred during an accident at a Westinghouse nuclear power plant. On the other hand, EPR is a 3rd generation nuclear power plant, which applies the advanced European nuclear power technology. This paper introduced Core Damage Assessment Guidance methodology in detail. The CDAG methodology is then attempted to apply to the EPR nuclear power plant. Detailed calculations have been performed for the setpoints of containment radiation monitors (CRM) and core exit thermocouples (CETs) with EPR design characteristics, which are the two main methods for estimation core damage amount. This paper also focuses the discussion on the reasons of difference of core damage estimating results between CRM method and CETs method; based on the discussion, several advices are provided when the two methods show a reasonable discrepancy in conclusions. Several conclusions can be made from the discussions in this article that 1)the Westinghouse Owners Group CDAG methodology proved to be reasonable when applied to EPR power plant for core damage assessment under severe accident; 2) the CDAG methodology which reflect the latest understanding of fission product behavior, is very simple and timely for core damage assessment based on NPP (nuclear power plant) real-time parameters; 3) conservative calculation results of setpoints on CRM and CETs based on EPR design show a reasonable trend and range; 4) it is concluded that several factors such as the releasing way, RCS fission product retention, fuel burnups might have great impact on the estimating results, when the results from two main indications (CRM and CETs) show an unexpected response.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Gilberto Espinosa-Paredes ◽  
Raúl Camargo-Camargo ◽  
Alejandro Nuñez-Carrera

The loss-of-coolant accident (LOCA) simulation in the boiling water reactor (BWR) of Laguna Verde Nuclear Power Plant (LVNPP) at 105% of rated power is analyzed in this work. The LVNPP model was developed using RELAP/SCDAPSIM code. The lack of cooling water after the LOCA gets to the LVNPP to melting of the core that exceeds the design basis of the nuclear power plant (NPP) sufficiently to cause failure of structures, materials, and systems that are needed to ensure proper cooling of the reactor core by normal means. Faced with a severe accident, the first response is to maintain the reactor core cooling by any means available, but in order to carry out such an attempt is necessary to understand fully the progression of core damage, since such action has effects that may be decisive in accident progression. The simulation considers a LOCA in the recirculation loop of the reactor with and without cooling water injection. During the progression of core damage, we analyze the cooling water injection at different times and the results show that there are significant differences in the level of core damage and hydrogen production, among other variables analyzed such as maximum surface temperature, fission products released, and debris bed height.


Author(s):  
Deucksoo Lee ◽  
Dong-Su Kim ◽  
Young-Taik Lee ◽  
O-Keol Kwon ◽  
Jung-Cha Kim

Ulchin nuclear power plant units 5&6 (UCN 5&6), which started excavation on January 1999, are two loop pressurized water reactors (PWR) with the capacity of 1000 MWe, and planned to start commercial operation on June, 2004 and June, 2005, respectively. The reactor coolant system of the UCN 5&6 consist of a reactor vessel, internals, and two steam generators, four reactor coolant pumps, a pressurizer and primary piping. Based on the system design of the first Korean Standard Nuclear Power Plant (KSNP), UCN 5&6 is designed to provide improvements in safety, reliability and cost by applying both advanced proven technology and experiences gained from the construction and operation of the previous KSNP plants. The result of the preliminary probabilistic safety assessment study for UCN 5&6 shows that the core damage frequency is lowered significantly. Several design improvement items have been adopted to the system design and contributed to lower the core damage frequency value. Among the design improvements, digital PPS and digital ESFAS are the key to the UCN 5&6 design. Furthermore, digitization of the Plant Protection System (PPS) and Engineered Safety Feature Actuation System (ESFAS) for the PWR is the first case in the PWR construction history. The Korean regulatory body reviewed the design concept of the digital PPS and digital ESFAS, and evaluated to be acceptable for the plant safety. Also, in-depth review on the detail design of the digital PPS/ESFAS and the special evaluation/audit for the software design process are underway to secure the software quality. The safety of the UCN 5&6 design has been evaluated through a two-year review on the preliminary safety analysis report. As a result, the construction permit was issued on May 17, 1999 by the government. In this paper, design characteristics of UCN 5&6 are discussed focussed on design improvements comparing with KSNR. And, some of the safety analysis results are presented as well as licensing status.


Author(s):  
Longze Li ◽  
Mingjun Wang ◽  
Wenxi Tian ◽  
Guanghui Su ◽  
Suizheng Qiu

The severe accident of CPR1000 caused by station blackout with the SG safety valve failure is simulated and analyzed using MELCOR code in this work. The CPR1000 power plant severe accident response process and the results with three different assumptions, which are no the seal leakage nor the auxiliary feed water, the seal leakage and auxiliary feed water exist, the seal leakage exist but no auxiliary feed water separately, are analyzed. According to the calculation results, without the seal leakage and auxiliary feed water, pressure vessel would fail at 9576 s. When auxiliary feed water was supplied, pressure vessel’s failure time would delay nearly 30000s. When the seal leakage exists, pressure vessel’s failure time would delay about 50 s. The results are meaningful and significant for comprehending the detailed process of severe accident for CPR1000 nuclear power plant, which is the basic standard for establishing the severe accident management guideline.


2018 ◽  
Vol 4 (3) ◽  
Author(s):  
Kevin Fernández-Cosials ◽  
Gonzalo Jiménez ◽  
César Serrano ◽  
Luisa Ibáñez ◽  
Ángel Peinado

During a severe accident (SA) in a nuclear power plant (NPP), there are several challenges that need to be faced. To coup with a containment overpressure, the venting action will lower the pressure but it will release radioactivity to the environment. In order to reduce the radioactivity released, a filtered containment venting system (FCVS) can be used to retain iodine and aerosols radioactive releases coming from the containment atmosphere. However, during a SA, large quantities of hydrogen can also be generated. Hydrogen reacts violently with oxygen and its combustion could impair systems, components, or structures. For this reason, to protect the integrity of the FCVS against hydrogen explosions, an inertization system is found necessary. This system should create an inert atmosphere previous to any containment venting that impedes the contact of hydrogen and oxygen. In this paper, the inertization system for Cofrentes NPP is presented. It consists of a nitrogen injection located in three different points. A computational model of the FCVS as well as the inertization system has been created. The results show that if the nitrogen sweeps and the containment venting are properly synchronized, the hydrogen risk could be reduced to a minimum and therefore, the integrity of the FCVS would be preserved.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Kwame Gyamfi ◽  
Sylvester Attakorah Birikorang ◽  
Emmanuel Ampomah-Amoako ◽  
John Justice Fletcher

Abstract Atmospheric dispersion modeling and radiation dose calculation have been performed for a generic 1000 MW water-water energy reactor (VVER-1000) assuming a hypothetical loss of coolant accident (LOCA). Atmospheric dispersion code, International Radiological Assessment System (InterRAS), was employed to estimate the radiological consequences of a severe accident at a proposed nuclear power plant (NPP) site. The total effective dose equivalent (TEDE) and the ground deposition were calculated for various atmospheric stability classes, A to F, with the site-specific averaged meteorological conditions. From the analysis, 3.7×10−1 Sv was estimated as the maximum TEDE corresponding to a downwind distance of 0.1 km within the dominating atmospheric stability class (class A) of the proposed site. The intervention distance for evacuation (50 mSv) and sheltering (10 mSv) were estimated for different stability classes at different distances. The intervention area for evacuation ended at 0.5 km and that for sheltering at 1.5 km. The results from the study show that designated area for public occupancy will not be affected since the estimated doses were below the annual regulatory limits of 1 mSv.


Author(s):  
Frank Kretzschmar

In the case of a severe accident in a nuclear power plant there is a residual risk, that the Reactor Pressure Vessel (RPV) does not withstand the thermal attack of the molten core material, of which the temperature can be about 3000 K. For the analysis of the processes governing melt dispersal and heating up of the containment atmosphere of a nuclear power plant in the case of such an event, it is important to know the time of the onset of gas blowthrough during the melt expulsion through the hole in the bottom of the RPV. In the test facility DISCO-C (Dispersion of Simulant Corium-Cold) at the FZK /6/, experiments were performed to furnish data for modeling Direct Containment Heating (DCH) processes in computer codes that will be used to extrapolate these results to the reactor case. DISCO-C models the RPV, the Reactor Coolant System (RCS), cavity and the annular subcompartments of a large European reactor in a scale 1:18. The liquid type, the initial liquid mass, the type of the driving gas and the size of the hole were varied in these experiments. We present results for the onset of the gas blowthrough that were reached by numerical analysis with the Multiphase-Code SIMMER. We compare the results with the experimental results from the DISCO-C experiments and with analytical correlations, given by other authors.


Author(s):  
Wang Ziguan ◽  
Lu Fang ◽  
Yang Benlin ◽  
Chen Shi ◽  
Hu Lingsheng

Abstract Risk-informed design approaches are comprehensively implemented in the design and verification process of HPR1000 nuclear power plant. Particularly, Level 2 PSA is applied in the optimization of severe accident prevention and mitigation measures to avoid the extravagant redundancy of system configurations. HPR1000 preliminary level 2 PSA practices consider internal events of the reactor in the context of at-power condition. Severe accidents mitigation and prevention system and its impact on the overall large release frequency (LRF) level are evaluated. The results showed that severe accident prevention and mitigation systems, such as fast depressurization system, the cavity injection system and the passive containment heat removal system perform well in reducing LRF and overall risk level of HPR1000 NPP. Bypass events, reactor rapture events, and the containment bottom melt-through induced by MCCI are among the dominant factors of the LRF. The level 2 PSA analysis results indicate that HPR1000 design is reliable with no major weaknesses.


Sign in / Sign up

Export Citation Format

Share Document