scholarly journals Heat Transfer Behaviour and Flow Field Characterisation of Impinging Synthetic Jets for a Wide Range of Parameters

Author(s):  
Rayhaan Farrelly ◽  
Alan McGuinn ◽  
Tim Persoons ◽  
Darina Murray

Impinging synthetic jets are considered as a potential solution for convective cooling, in applications that match their main characteristics (high local heat transfer rates, zero net mass flux, scalability, active control). Nevertheless the understanding of heat transfer to synthetic jets falls short of that available for steady jets. To address this, this paper uses detailed flow field measurements to help identify the main heat transfer mechanisms in impinging synthetic jets. Local heat transfer measurements have been performed for an impinging round synthetic jet at a range of Reynolds numbers between 1000 and 3000, nozzle to plate spacings between 4D and 16D and stroke lengths (L0) between 2D and 32D. The heat transfer results show evidence of distinct regimes in terms of L0/D and L0/H ratios. Based on appropriate scaling, four heat transfer regimes are identified which justifies a detailed study of the flow field characteristics. High speed particle image velocimetry (PIV) has been employed to measure the time-resolved velocity flow fields of the synthetic jet to identify the flow structures at selected L0/H values corresponding to the identified heat transfer regimes. The flow measurements support the same regimes as identified from the heat transfer measurements and provide physical insight for the heat transfer behaviour.

Author(s):  
David M. Sykes ◽  
Andrew L. Carpenter ◽  
Gregory S. Cole

Microchannels and minichannels have been shown to have many potential applications for cooling high-heat-flux electronics over the past 3 decades. Synthetic jets can enhance minichannel performance by adding net momentum flux into a stream without adding mass flux. These jets are produced because of different flow patterns that emerge during the induction and expulsion stroke of a diaphragm, and when incorporated into minichannels can disrupt boundary layers and impinge on the far wall, leading to high heat transfer coefficients. Many researchers have examined the effects of synthetic jets in microchannels and minichannels with single-phase flows. The use of synthetic jets has been shown to augment local heat transfer coefficients by 2–3 times the value of steady flow conditions. In this investigation, local heat transfer coefficients and pressure loss in various operating regimes were experimentally measured. Experiments were conducted with a minichannel array containing embedded thermocouples to directly measure local wall temperatures. The experimental range extends from transitional to turbulent flows. Local wall temperature measurements indicate that increases of heat transfer coefficient of over 20% can occur directly below the synthetic jet with low exit qualities. In this study, the heat transfer augmentation by using synthetic jets was dictated by the momentum ratio of the synthetic jet to the bulk fluid flow. As local quality was increased, the heat transfer augmentation dropped from 23% to 10%. Surface tension variations had a large effect on the Nusselt number, while variations in inertial forces had a small effect on Nusselt number in this operating region.


2005 ◽  
Vol 127 (5) ◽  
pp. 458-471 ◽  
Author(s):  
Oguz Uzol ◽  
Cengiz Camci

This paper presents the results of heat transfer, total pressure loss, and wake flow field measurements downstream of two-row staggered elliptical and circular pin fin arrays. Two different types of elliptical fins are tested, i.e., a Standard Elliptical Fin (SEF) and a fin that is based on NACA four digit symmetrical airfoil shapes (N fin). The results are compared to those of a corresponding circular pin fin array. The minor axis lengths for both types of elliptical fins are kept equal to the diameter of the circular fins. Experiments are performed using Liquid Crystal Thermography and total pressure probe wake surveys in a Reynolds number range of 18 000 and 86 000 as well as Particle Image Velocimetry (PIV) measurements at ReD=18 000. The pin fins had a height-to-diameter ratio of 1.5. The streamwise and the transverse spacings were equal to one circular fin diameter, i.e., S/D=X/D=2. For the circular fin array, average Nusselt numbers on the endwall within the wake are about 27% higher than those of SEF and N fin arrays. Different local heat transfer enhancement patterns are observed for elliptical and circular fins. In terms of total pressure loss, there is a substantial reduction in case of SEF and N fins. The loss levels for the circular fin are 46.5% and 59.5% higher on average than those of the SEF and N fins, respectively. An examination of the Reynolds analogy performance parameter show that the performance indices of the SEF and the N fins are 1.49 and 2.0 times higher on average than that of circular fins, respectively. The thermal performance indices show a collapse of the data, and the differences are much less evident. Nevertheless, N fins still show slightly higher thermal performance values. The wake flow field measurements show that the circular fin array creates a relatively large low momentum wake zone compared to the SEF and N fin arrays. The wake trajectories of the first row of fins in circular, SEF and N fin arrays are also different from each other. The turbulent kinetic energy levels within the wake of the circular fin array are higher than those for the SEF and the N fin arrays. The transverse variations in turbulence levels correlate well with the corresponding local heat transfer enhancement variations.


2001 ◽  
Author(s):  
V. Narayanan ◽  
J. Seyed-Yagoobi ◽  
R. H. Page

Abstract Detailed heat transfer, impingement surface pressure and flow field measurements on a submerged slot jet reattachment nozzle are presented. The nozzle is comprised of a rectangular region of aspect ratio 20:1, with circular ends. The jet exits the nozzle parallel to an adjacent flat impingement surface and reattaches onto it. Contours of local heat transfer exhibit three-dimensionality within the recirculation and reattachment regions with increase in nozzle-to-surface spacing. Mean and time averaged fluctuating surface pressure distribution at the center plane of the nozzle along the minor indicate that the location of peak fluctuating pressure occurs upstream of the peak mean pressure. Flow field measurements are presented for a nozzle-to-surface spacing of 3.85 exit hydraulic diameters from the surface, at a turbulent exit Reynolds number of 10 500. Surface pressure and flow field observations are used to explain heat transfer results in the recirculation and reattachment regions.


Author(s):  
David M. Sykes ◽  
Andrew L. Carpenter ◽  
Gregory S. Cole

Microchannels and minichannels have been shown to have many potential applications for cooling high-heat-flux electronics over the past 3 decades. Synthetic jets can enhance minichannel performance by adding net momentum flux into a stream without adding mass flux. These jets are produced because of different flow patterns that emerge during the induction and expulsion stroke of a diaphragm, and when incorporated into minichannels can disrupt boundary layers and impinge on the far wall, leading to high heat transfer coefficients. Many researchers have examined the effects of synthetic jets in microchannels and minichannels with single-phase flows. The use of synthetic jets has been shown to augment local heat transfer coefficients by 2–3 times the value of steady flow conditions. In this investigation, local heat transfer coefficients and pressure loss in various operating regimes were experimentally measured. Experiments were conducted with a minichannel array containing embedded thermocouples to directly measure local wall temperatures. Flow regimes ranged from laminar to turbulent. Local wall temperature measurements taken directly beneath the synthetic jet in a laminar flow regime indicated that when a synthetic jet was used, the heat transfer coefficient was increased as much as 2.8 times the value as when synthetic jets were not used. Significant heat transfer coefficient augmentation also propagated to the upstream location, where heat transfer was increased to 2.2 times the value as when the synthetic jets were not used. Additional measurements show that synthetic jets significantly altered the pressure loss coefficient of the minichannels and that this effect was more pronounced in laminar flow than in turbulent flow. The effect of operating frequency on heat transfer and pressure loss is also presented. It was shown that the optimal operating point for the synthetic jet within a minichannel was in transitional to weakly turbulent flow (2600<Re<4500) to maximize the increase in heat transfer coefficient and minimize the increase in pressure loss.


Author(s):  
D. O. O’Dowd ◽  
Q. Zhang ◽  
L. He ◽  
M. L. G. Oldfield ◽  
P. M. Ligrani ◽  
...  

This paper presents an experimental and numerical investigation of the aero-thermal performance of an uncooled winglet tip, under transonic conditions. Spatially-resolved heat transfer data, including winglet tip surface and near tip side walls, are obtained using the transient infrared thermography technique within the Oxford High Speed Linear Cascade test facility. CFD predictions are also conducted using the Rolls-Royce HYDRA suite. Most of the spatial heat transfer variations on the tip surface are well-captured by the CFD solver. The transonic flow pattern and its influence on heat transfer are analyzed, which shows that the turbine blade tip heat transfer is greatly influenced by the shock wave structure inside the tip gap. The effect of the casing relative motion is also numerically investigated. The CFD results indicate that the local heat transfer distribution on the tip is affected by the relative casing motion, but the tip flow choking and shock wave structure within the tip gap still exist in the aft region of the blade.


Author(s):  
G. Rau ◽  
M. Çakan ◽  
D. Moeller ◽  
T. Arts

The local aerodynamic and heat transfer performance were measured in a rib-roughened square duct as a function of the rib pitch to beight ratio. The blockage ratio of these square obstacles was 10% or 20% depending on whether they were placed on one single (1s) or on two opposite walls (2s). The Reynolds number, based on the channel mean velocity and hydraulic diameter, was fixed at 30000. The aerodynamic description of the flow field was based on local pressure distributions along the ribbed and adjacent smooth walls as well as on 2D LDV explorations in the channel symmetry plane and in two planes parallel to the ribbed wall(s). Local heat transfer distributions were obtained on the floor, between the ribs, and on the adjacent smooth side wall. Averaged parameters, such as friction factor and averaged heat transfer enhancement factor, were calculated from the local results and compared to correlations given in literature. This contribution showed that simple correlations derived from the law of the wall similarity and from the Reynolds analogy could not be applied for the present rib height-to-channel hydraulic diameter ratio (e/Dh=0.1). The strong secondary flows resulted in a three-dimensional flow field with high gradients in the local heat transfer distributions on the smooth side walls.


1999 ◽  
Vol 123 (4) ◽  
pp. 749-757 ◽  
Author(s):  
S. Baldauf ◽  
A. Schulz ◽  
S. Wittig

Local heat transfer coefficients on a flat plate surface downstream a row of cylindrical ejection holes were investigated. The parameters blowing angle, hole pitch, blowing rate, and density ratio were varied over a wide range, emphasizing engine relevant conditions. A high-resolution IR-thermography technique was used for measuring surface temperature fields. Local heat transfer coefficients were obtained from a Finite Element analysis. IR-determined surface temperatures and backside temperatures of the cooled test plate measured with thermocouples were applied as boundary conditions in this heat flux computation. The superposition approach was employed to obtain the heat transfer coefficient hf based on the difference between actual wall temperatures and adiabatic wall temperatures in the presence of film cooling. The hf data are given for an engine relevant density ratio of 1.8. Therefore, heat transfer results with different wall temperature conditions and adiabatic film cooling effectiveness results for identical flow situations (i.e., constant density ratios) were combined. Characteristic surface patterns of the locally resolved heat transfer coefficients hf are recognized and quantified as the different ejection parameters are changed. The detailed results are used to discuss the specific local heat transfer behavior in the presence of film cooling. They also provide a base of surface data essential for the validation of the heat transfer capabilities of CFD codes in discrete hole film cooling.


2012 ◽  
Vol 134 (8) ◽  
Author(s):  
Mehmet Arik ◽  
Tunc Icoz

Synthetic jets are piezo-driven, small-scale, pulsating devices capable of producing highly turbulent jets formed by periodic entrainment and expulsion of the fluid in which they are embedded. The compactness of these devices accompanied by high air velocities provides an exciting opportunity to significantly reduce the size of thermal management systems in electronic packages. A number of researchers have shown the implementations of synthetic jets on heat transfer applications; however, there exists no correlation to analytically predict the heat transfer coefficient for such applications. A closed form correlation was developed to predict the heat transfer coefficient as a function of jet geometry, position, and operating conditions for impinging flow based on experimental data. The proposed correlation was shown to predict the synthetic jet impingement heat transfer within 25% accuracy for a wide range of operating conditions and geometrical variables.


Sign in / Sign up

Export Citation Format

Share Document