Experimental Investigation of Silicon-Based Oblique Finned Microchannel Heat Sinks

Author(s):  
Yong-Jiun Lee ◽  
Poh-Seng Lee ◽  
Siaw-Kiang Chou

Sectional oblique fins are employed in contrast to the continuous fins in order to modulate the flow in microchannel heat sink. Experimental investigation of silicon based oblique finned microchannel heat sink demonstrated a highly augmented and uniform heat transfer performance against the conventional microchannel. The breakage of continuous fin into oblique sections leads to the re-initialization of the thermal boundary layers at the leading edge of each oblique fin, effectively reducing the boundary-layer thickness. This regeneration of the entrance effect causes the flow to be always in a developing state thus resulting in better heat transfer. In addition, the presence of smaller oblique channels diverts a fraction of the flow into the adjacent main channels. The secondary flows thus created improve fluid mixing which serves to further enhance the heat transfer. The average Nusselt number, Nuave, for the silicon microchannel heat sink which uses water as the working fluid can increase as much as 55%, from 8.8 to 13.6. Besides, the augmented convective heat transfer leads to reduction in both maximum chip temperature and its temperature gradient, by 8.6°C and 47% respectively. Interestingly, there is only little or negligible pressure drop penalty associated with this novel heat transfer enhancement scheme in contrast to conventional enhancement techniques.

Author(s):  
Yong-Jiun Lee ◽  
Poh-Seng Lee ◽  
Siaw-Kiang Chou

Oblique fins created in a microchannel heat sink can serve to modulate the flow, resulting in local and global heat transfer enhancement. Numerical analysis of laminar flow and heat transfer in such modified microchannel heat sink showed that significant enhancement of heat transfer can be achieved with negligible pressure drop penalty. The breakage of continuous fin into oblique sections causes the thermal boundary layers to be re-initialized at the leading edge of each oblique fin and reduces the boundary-layer thickness. This regeneration of the entrance effect causes the flow to be always in a developing state thus resulting in better heat transfer. In addition, the presence of the smaller oblique channels causes a fraction of the flow to branch into the adjacent main channels. The secondary flows thus created improve fluid mixing which serves to further enhance the heat transfer. The combination of the entrance and secondary flow effect results in a much improved heat transfer performance (the average and local heat transfer coefficients are enhanced by as much as 80%). Both the maximum wall temperature and temperature gradient are substantially decreased as a result.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Y. J. Lee ◽  
P. S. Lee ◽  
S. K. Chou

Sectional oblique fins are employed, in contrast to continuous fins in order to modulate the flow in microchannel heat sinks. The breakage of a continuous fin into oblique sections leads to the reinitialization of the thermal boundary layer at the leading edge of each oblique fin, effectively reducing the boundary layer thickness. This regeneration of entrance effects causes the flow to always be in a developing state, thus resulting in better heat transfer. In addition, the presence of smaller oblique channels diverts a small fraction of the flow into adjacent main channels. The secondary flows created improve fluid mixing, which serves to further enhance heat transfer. Both numerical simulations and experimental investigations of copper-based oblique finned microchannel heat sinks demonstrated that a highly augmented and uniform heat transfer performance, relative to the conventional microchannel, is achievable with such a passive technique. The average Nusselt number, Nuave, for the copper microchannel heat sink which uses water as the working fluid can increase as much as 103%, from 11.3 to 22.9. Besides, the augmented convective heat transfer leads to a reduction in maximum temperature rise by 12.6 °C. The associated pressure drop penalty is much smaller than the achieved heat transfer enhancement, rendering it as an effective heat transfer enhancement scheme for a single-phase microchannel heat sink.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Y. J. Lee ◽  
P. S. Lee ◽  
S. K. Chou

Sectional oblique fins are employed in contrast to continuous fins in order to modulate flow in microchannel heat sink. The breakage of continuous fin into oblique sections leads to the reinitialization of both hydrodynamic and thermal boundary layers at the leading edge of each oblique fin, effectively reducing the thickness of boundary layer. This regeneration of entrance effect causes the flow to be always in a developing state thus resulting in better heat transfer. In addition, the presence of smaller oblique channels diverts a small fraction of flow into the adjacent main channels. The secondary flows thus created improve fluid mixing which serves to further enhance the heat transfer. Detailed numerical study on the fluid flow and heat transfer of this passive heat transfer enhancement technique provides insight to the local hydrodynamics and thermal development along the oblique fin. The uniquely skewed hydrodynamic and thermal profiles are identified as the key to the highly augmented and uniform heat transfer performance across the heat sink. The associated pressure drop penalty is much smaller than the achieved heat transfer enhancement, rendering it as an effective heat transfer enhancement scheme for single phase microchannel heat sink.


2015 ◽  
Vol 35 (3) ◽  
pp. 44-52 ◽  
Author(s):  
Jorge Mario Cruz ◽  
Iván Mauricio Amaya ◽  
Carlos Rodrigo Correa

Many factors affect heat transfer during the cooling of modern electronic devices. Today, knowledge accrues from modeling, simu-lation, and experimentation. This allows predicting and calculating features of heat transfer phenomena, to some extent. Examples include the amount of heat generated and removed, the required physical properties of the working fluid, and the required material properties of the heat sink, among other parameters. This article describes some simulation results of using air with a given relative humidity (10 %, 50 % and 90 %). Its influence on the heat transfer process was also analyzed. Results show a measurable effect of using humidified air instead of dry air and copper as a bulk material. The heat transfer rate increased about 20 % when using air with 90 % relative humidity passing through a rectangular microchannel heat sink made of copper.


2021 ◽  
Vol 1163 ◽  
pp. 73-88
Author(s):  
Md Tanbir Sarowar

Microchannel heat sink plays a vital role in removing a considerable amount of heat flux from a small surface area from different electronic devices. In recent times, the rapid development of electronic devices requires the improvement of these heat sinks to a greater extent. In this aspect, the selection of appropriate substrate materials of the heat sinks is of vital importance. In this paper, three boron-based ultra-high temperature ceramic materials (ZrB2, TiB2, and HfB2) are compared as a substrate material for the microchannel heat sink using a numerical approach. The fluid flow and heat transfer are analyzed using the finite volume method. The results showed that the maximum temperature of the heat source didn’t exceed 355K at 3.6MWm-2 for any material. The results also indicated HfB2 and TiB2 to be more useful as a substrate material than ZrB2. By applying 3.6 MWm-2 heat flux at the source, the maximum obtained surface heat transfer coefficient was 175.2 KWm-2K-1 in a heat sink having substrate material HfB2.


Author(s):  
Ayman Megahed ◽  
Ibrahim Hassan ◽  
Tariq Ahmad

The present study focuses on the experimental investigation of boiling heat transfer characteristics and pressure drop in a silicon microchannel heat sink. The microchannel heat sink consists of a rectangular silicon chip in which 45 rectangular microchannels were chemically etched with a depth of 295 μm, width of 254 μm, and a length of 16 mm. Un-encapsulated Thermochromic liquid Crystals (TLC) are used in the present work to enable nonintrusive and high spatial resolution temperature measurements. This measuring technique is used to provide accurate full and local surface-temperature and heat transfer coefficient measurements. Experiments are carried out for mass velocities ranging between 290 to 457 kg/m2.s and heat fluxes from 6.04 to 13.06 W/cm2 using FC-72 as the working fluid. Experimental results show that the pressure drop increases as the exit quality and the flow rate increase. High values of heat transfer coefficient can be obtained at low exit quality (xe < 0.2). However, the heat transfer coefficient decreases sharply and remains almost constant as the quality increases for an exit quality higher than 0.2.


Author(s):  
Suchismita Sarangi ◽  
Karthik K. Bodla ◽  
Suresh V. Garimella ◽  
Jayathi Y. Murthy

Conventional microchannel heat sinks provide good heat dissipation capability but are associated with high pressure drop and corresponding pumping power. The use of a manifold system that distributes the flow into the microchannels through multiple, alternating inlet and outlet pairs is investigated here. This manifold arrangement greatly reduces the pressure drop incurred due to the smaller flow paths, while simultaneously increasing the heat transfer coefficient by tripping the thermal boundary layers. A three-dimensional numerical model is developed and validated, to study the effect of various geometric parameters on the performance of the manifold microchannel heat sink. Apart from a deterministic analysis, a probabilistic optimization study is also performed. In the presence of uncertainties in the geometric and operating parameters of the system, this probabilistic optimization approach yields an optimal design that is also robust and reliable. Uncertainty-based optimization also yields auxiliary information regarding local and global sensitivities and helps identify the input parameters to which outputs are most sensitive. This information can be used to design improved experiments targeted at the most sensitive inputs. Optimization under uncertainty also provides a quantitative estimate of the allowable uncertainty in input parameters for an acceptable uncertainty in the relevant output parameters. The optimal geometric design parameters with uncertainties that maximize heat transfer coefficient while minimizing pressure drop for fixed input conditions are identified for a manifold microchannel heat sink. A comparison between the deterministic and probabilistic optimization results is also presented.


2016 ◽  
Vol 819 ◽  
pp. 127-131
Author(s):  
Navin Raja Kuppusamy ◽  
N.N.N. Ghazali ◽  
Saidur Rahman ◽  
M.A. Omar Awang ◽  
Hussein A. Mohammed

The present study focuses on the numerical study of thermal and flow characteristics in a microchannel heat sink with alternating trapezoidal cavities in sidewall (MTCS). The effects of flow rate and heat flux on friction factor and Nusselt are presented. The results showed considerable improvement heat transfer performance micro channel heat sink with alternating trapezoidal cavities in sidewall with an acceptable pressure drop. The heat transfer rate has improved in the cavity area due the greater fluid mixing in fluid vortices and thermal boundary layer disruption. The slipping over the reentrant cavities and pressure gain reduces pressure drop appears as the reason behind of only minor pressure drop due to the cavities.


Sign in / Sign up

Export Citation Format

Share Document