Effects of Cutting Parameters on Chip Side-Curl Mechanisms and Variable Tool-Chip Contact in Turning

1999 ◽  
Author(s):  
A. K. Balaji ◽  
I. S. Jawahir

Abstract This paper presents the results of an investigative study on the chip side-curling mechanism and the associated variable tool-chip contact in turning operations. The effect of various cutting and tool geometry parameters such as depth of cut-nose radius ratio, feed, inclination angle, etc. on chip side-curling are established in a hierarchical manner. The importance of variable friction at the tool-chip interface along the developed length of the cutting edge is shown from the experimental observations of the tool-chip contact area using a SEM analysis. The significant influence of the radial cutting force component on the resultant chip side-curl is established using a high speed-filming analysis of comparative experiments in tube and bar turning operations.

2012 ◽  
Vol 217-219 ◽  
pp. 2133-2137
Author(s):  
Bing Yan ◽  
Yang Li ◽  
Wei Wang ◽  
Hao Feng

The cutting tool geometry and cutting parameters have a great impact on cutting force, while cutting force is an important factor which affecting the tool life. High speed cutting experiments have shown that when slight axial depth of cut is adopted, rake angle effect on main cutting force significantly. When cutting aluminum alloy, the roughness of machined surface decrease with increasing tool rake angle. The axial depth of cut does not have a big influence on machined surface ’s roughness.


2014 ◽  
Vol 633-634 ◽  
pp. 769-772
Author(s):  
Li Zhou ◽  
Cheng Yong Wang ◽  
Wen Hong Li ◽  
Bai Xi Zhu ◽  
Yu Jia Zhai

Graphite chip formation is important for the understanding of high speed milling of brittle graphite. This paper is aimed to reveal the influence of cutting conditions on the graphite chip formation in high speed milling. The relationship between the maximum undeformed chip thickness and cutting parameters was analyzed, and the influence of cutting parameters, tool geometry and milling patterns on the chip formation of brittle graphite was studied. It is concluded that the transitions of graphite chip formations were highly dependent on the undeformed chip thickness which is decided by the combination setting of feed per tooth and radial depth of cut. Big fractured block chip occurs more easily in up milling than down milling. Tool rake angle influences the chip formation according to the maximum undeformed chip thickness.


2010 ◽  
Vol 447-448 ◽  
pp. 51-54
Author(s):  
Mohd Fazuri Abdullah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Jaharah A. Ghani

The effects of different cutting parameters, insert nose radius, cutting speed and feed rates on the surface quality of the stainless steel to be use in medical application. Stainless steel AISI 316 had been machined with three different nose radiuses (0.4 mm 0.8 mm, and 1.2mm), three different cutting speeds (100, 130, 170 m/min) and feed rates (0.1, 0.125, 0.16 mm/rev) while depth of cut keep constant at (0.4 mm). It is seen that the insert nose radius, feed rates, and cutting speed have different effect on the surface roughness. The minimum average surface roughness (0.225µm) has been measured using the nose radius insert (1.2 mm) at lowest feed rate (0.1 mm/rev). The highest surface roughness (1.838µm) has been measured with nose radius insert (0.4 mm) at highest feed rate (0.16 mm/rev). The analysis of ANOVA showed the cutting speed is not dominant in processing for the fine surface finish compared with feed rate and nose radius. Conclusion, surface roughness is decreasing with decreasing of the feed rate. High nose radius produce better surface finish than small nose radius because of the maximum uncut chip thickness decreases with increase of nose radius.


2016 ◽  
Vol 78 (6-9) ◽  
Author(s):  
Mohd Shahfizal Ruslan ◽  
Kamal Othman ◽  
Jaharah A.Ghani ◽  
Mohd Shahir Kassim ◽  
Che Hassan Che Haron

Magnesium alloy is a material with a high strength to weight ratio and is suitable for various applications such as in automotive, aerospace, electronics, industrial, biomedical and sports. Most end products require a mirror-like finish, therefore, this paper will present how a mirror-like finishing can be achieved using a high speed face milling that is equivalent to the manual polishing process. The high speed cutting regime for magnesium alloy was studied at the range of 900-1400 m/min, and the feed rate for finishing at 0.03-0.09 mm/tooth. The surface roughness found for this range of cutting parameters were between 0.061-0.133 µm, which is less than the 0.5µm that can be obtained by manual polishing. Furthermore, from the S/N ratio plots, the optimum cutting condition for the surface roughness can be achieved at a cutting speed of 1100 m/min, feed rate 0.03 mm/tooth, axial depth of cut of 0.20 mm and radial depth of cut of 10 mm. From the experimental result the lowest surface roughness of 0.061µm was obtained at 900 m/min with the same conditions for other cutting parameters. This study revealed that by milling AZ91D at a high speed cutting, it is possible to eliminate the polishing process to achieve a mirror-like finishing.


2021 ◽  
Vol 13 (3) ◽  
pp. 205-214
Author(s):  
P. U MAMAHESWARRAO ◽  
D. RANGARAJU ◽  
K. N. S. SUMAN ◽  
B. RAVISANKAR

In this article, a recently developed method called surface defect machining (SDM) for hard turning has been adopted and termed surface defect hard turning (SDHT). The main purpose of the present study was to explore the impact of cutting parameters like cutting speed, feed, depth of cut, and tool geometry parameters such as nose radius and negative rake angle of the machining force during surface defect hard turning (SDHT) of AISI 52100 steel in dry condition with Polycrystalline cubic boron nitride (PCBN) tool; and results were compared with conventional hard turning (CHT). Experimentation is devised and executed as per Central Composite Design (CCD) of Response Surface Methodology (RSM). Results reported that an average machining force was decreased by 22% for surface defect hard turning (SDHT) compared to conventional hard turning (CHT).


2019 ◽  
Vol 11 (6) ◽  
pp. 168781401985318
Author(s):  
Amon Gasagara ◽  
Wuyin Jin ◽  
Angelique Uwimbabazi

In this article, a new model of regenerative vibrations due to the deflection of the cutting tool in turning is proposed. The previous study reported chatter as a result of cutting a wavy surface of the previous cut. The proposed model takes into account cutting forces as the main factor of tool deflection. A cantilever beam model is used to establish a numerical model of the tool deflection. Three-dimensional finite element method is used to estimate the tool permissible deflection under the action of the cutting load. To analyze the system dynamic behavior, 1-degree-of-freedom model is used. MATLAB is used to compute the system time series from the initial value using fourth-order Runge–Kutta numerical integration. A straight hard turning with minimal fluid application experiment is used to obtain cutting forces under stable and chatter conditions. A single-point cutting tool made from high-speed steel is used for cutting. Experiment results showed that for the cutting parameters above 0.1mm/rev feed and [Formula: see text]mm depth of cut, the system develops fluctuations and higher chatter vibration frequency. Dynamic model vibration results showed that the cutting tool deflection induces chatter vibrations which transit from periodic, quasi-periodic, and chaotic type.


Author(s):  
Xia Ji ◽  
Steven Y Liang

This article presents a sensitivity analysis of residual stress based on the verified residual stress prediction model. The machining-induced residual stress is developed as a function of cutting parameters, tool geometry, material properties, and lubrication conditions. Based on the residual stress predictive model, the main effects of the cutting force, cutting temperature, and residual stress are quantitatively analyzed through the cosine amplitude method. The parametric study is carried out to investigate the effects of minimum quantity lubrication parameters, cutting parameters, and tool geometry on the cutting performances. Results manifest that the cutting force and residual stress are more sensitive to the heat transfer coefficient and the depth of cut, while the cutting temperature is more sensitive to the cutting speed. Large maximum compressive residual stress is obtained under a lower flow rate of minimum quantity lubrication, small depth of cut, and the proper air–oil mixture ratio. This research can support the controlling and optimization of residual stress in industrial engineering by strategically adjusting the application parameters of minimum quantity lubrication.


2008 ◽  
Vol 375-376 ◽  
pp. 206-210
Author(s):  
Hui Ping Zhang ◽  
Zhen Jia Li ◽  
Er Liang Liu ◽  
Guo Liang Wei

This paper deals with chip breaking behaviour of 3-D complex groove inserts in machining carbon constructional steel-45 steel at high cutting speeds .Cutting experiments were performed at eleven different cutting speeds. Firstly, the results showed that by increasing cutting speeds, the changes of the critical feedrate and chip breaking scopes at high cutting speeds machining with 3-D complex groove inserts were nonlinear and not monotonous function relations. Then, mathematic models were built. Secondly, the results showed that the critical depth of cut was a constant value at various cutting speeds. And, the curves of the critical depth of cut were perpendicular lines. For this purpose, the critical depth of cut mathematic model has been built. The study above lays a theory and basis for future investigation of the mechanism of chip breaking with 3-D groove insert in high speed machining.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 617 ◽  
Author(s):  
Ireneusz Zagórski ◽  
Jarosław Korpysa

Surface roughness is among the key indicators describing the quality of machined surfaces. Although it is an aggregate of several factors, the condition of the surface is largely determined by the type of tool and the operational parameters of machining. This study sought to examine the effect that particular machining parameters have on the quality of the surface. The investigated operation was the high-speed dry milling of a magnesium alloy with a polycrystalline diamond (PCD) cutting tool dedicated for light metal applications. Magnesium alloys have low density, and thus are commonly used in the aerospace or automotive industries. The state of the Mg surfaces was assessed using the 2D surface roughness parameters, measured on the lateral and the end face of the specimens, and the end-face 3D area roughness parameters. The description of the surfaces was complemented with the surface topography maps and the Abbott–Firestone curves of the specimens. Most 2D roughness parameters were to a limited extent affected by the changes in the cutting speed and the axial depth of cut, therefore, the results from the measurements were subjected to statistical analysis. From the data comparison, it emerged that PCD-tipped tools are resilient to changes in the cutting parameters and produce a high-quality surface finish.


Author(s):  
Zulay Cassier ◽  
Patricia Mun˜oz-Escanola ◽  
Rolda´n Sa´nchez

Plain carbon steels and alloy steels have a great application in the manufacturing process especially due to their characteristic of high machinability and low cost. The machining of these materials, the study of the cutting forces, and the power required for the cutting process is one of the most important parameters to be evaluated. The relationship between this parameter and the other cutting variables process is crucial for the optimization of the machining process. The results of this research are empirical expressions, obtained from the cutting parameters (tool nose radius, feed rate and depth of cut) and the influence of these parameters on the cutting forces for each carbon steel studied (AISI 1020, AISI 1045 and AISI 4340), as well as a general expression which includes the mechanical properties of these carbon steels. These results enable the user to predict cutting forces when using a turning process.


Sign in / Sign up

Export Citation Format

Share Document