Influence of Cutting Conditions on Chip Formation in High Speed Milling of Brittle Graphite

2014 ◽  
Vol 633-634 ◽  
pp. 769-772
Author(s):  
Li Zhou ◽  
Cheng Yong Wang ◽  
Wen Hong Li ◽  
Bai Xi Zhu ◽  
Yu Jia Zhai

Graphite chip formation is important for the understanding of high speed milling of brittle graphite. This paper is aimed to reveal the influence of cutting conditions on the graphite chip formation in high speed milling. The relationship between the maximum undeformed chip thickness and cutting parameters was analyzed, and the influence of cutting parameters, tool geometry and milling patterns on the chip formation of brittle graphite was studied. It is concluded that the transitions of graphite chip formations were highly dependent on the undeformed chip thickness which is decided by the combination setting of feed per tooth and radial depth of cut. Big fractured block chip occurs more easily in up milling than down milling. Tool rake angle influences the chip formation according to the maximum undeformed chip thickness.

2011 ◽  
Vol 697-698 ◽  
pp. 49-52 ◽  
Author(s):  
Xiao Yong Yang ◽  
Cheng Zu Ren ◽  
Guang Chen ◽  
Bing Han ◽  
Y. Wang

This study focused on the side milling surface roughness of titanium alloy under various cooling strategies and cutting parameters. The experimental results show that the cooling strategies significantly affect the surface roughness in milling Ti-6Al-4V. Surface roughness (Ra) alterations are investigated. Cutting fluid strategy made nearly all the smallest and most stable roughness values. The surface roughness values produced by all cooling strategies are obviously affected by feed, radial depth-of-cut and cutting speed. However, axial depth-of-cut has little influence.


2013 ◽  
Vol 584 ◽  
pp. 20-23
Author(s):  
Mao Hua Xiao ◽  
Ning He ◽  
Liang Li ◽  
Xiu Qing Fu

The method to measure the cutting speed when high speed milling nickel alloy Inconel 718 based on semi-artificial thermocouple. The cutting parameters, tool wear and so on the cutting temperature were analyzed. The tests showed that the temperature was gradually increased with the increase of cutting speed. The cutting speed must be more than 600m/min, when the ceramic tools would perform better cutting performance in the high-speed milling nickel-based superalloy. In order to achieve more efficient machining, milling speed can be increased to more than 1000m/min. The impact amount of Radial depth of cut and feed per tooth were relatively small.


2016 ◽  
Vol 861 ◽  
pp. 75-83
Author(s):  
Ying Xing Xie ◽  
Cheng Yong Wang ◽  
Feng Ding ◽  
Wen Huang

In order to obtain better surface quality after high speed milling high hardness mold steel, and reduce tool wear in cutting process, prolong the service life of cutting tools, obtain superior levels and optimal combination of cutting parameters in the test range. Through the design of orthogonal experiment, the use of Taguchi method, and noise ratio analysis and variance analysis of dry cutting high hardness mould steel PM60 under different cutting parameters; and finally, the optimal cutting parameters of surface roughness and cutting force value were predicted and verified. Research showed that: the worst cutting parameters influenced the surface roughness Ra was radial depth of cut ae, its influence was highly significant, followed by spindle speed n and depth of axial cut ap; the most serious impact cutting parameter of cutting force F was the feed speed vf, followed by the spindle speed n and radial depth of cut ae; verification test showed that the optimal cutting parameters combination were reasonable and the calculation errors of the predicted values and experimental values were very small, indicating that Taguchi method in cutting parameters optimization of cutting mould steel PM60 was valid.


2014 ◽  
Vol 800-801 ◽  
pp. 451-459
Author(s):  
Yu Hai Zhou ◽  
Cheng Yong Wang ◽  
Qi Ming Wang

This paper focusing on cutting performance high speed milling Electrical Discharging Machining (EDM) graphite with diamond coated、Carbide (WC) and TiAlN coated cutting Tools. tools wear, cutting force and machined surface had been researched. Experiment study including cutting speed, feed rate per tooth, radial depth of cut, axial depth of cut, and material of tools factors effects on the cutting forces. Cutting parameters are optimized based on the orthogonal experiment. Experiment in high speed milling with diamond coated tools all comparison with TiAlN coated and Carbide (WC) tools. On the surface quality, cutting forces and tool wear influence graphite cutting tool materials research, process parameters, tool design and optimization of processing parameters to provide supportive data. The minimum cutting force as the goal, through the orthogonal experiment for the optimization of cutting parameters obtained for the high speed milling graphite with diamond-coated tool: cutting force 360m/min,feed per tooth 0.15mm/z, radial depth of cut 0.9mm, axial depth of 9mm.


2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


2016 ◽  
Vol 78 (6-9) ◽  
Author(s):  
Mohd Shahfizal Ruslan ◽  
Kamal Othman ◽  
Jaharah A.Ghani ◽  
Mohd Shahir Kassim ◽  
Che Hassan Che Haron

Magnesium alloy is a material with a high strength to weight ratio and is suitable for various applications such as in automotive, aerospace, electronics, industrial, biomedical and sports. Most end products require a mirror-like finish, therefore, this paper will present how a mirror-like finishing can be achieved using a high speed face milling that is equivalent to the manual polishing process. The high speed cutting regime for magnesium alloy was studied at the range of 900-1400 m/min, and the feed rate for finishing at 0.03-0.09 mm/tooth. The surface roughness found for this range of cutting parameters were between 0.061-0.133 µm, which is less than the 0.5µm that can be obtained by manual polishing. Furthermore, from the S/N ratio plots, the optimum cutting condition for the surface roughness can be achieved at a cutting speed of 1100 m/min, feed rate 0.03 mm/tooth, axial depth of cut of 0.20 mm and radial depth of cut of 10 mm. From the experimental result the lowest surface roughness of 0.061µm was obtained at 900 m/min with the same conditions for other cutting parameters. This study revealed that by milling AZ91D at a high speed cutting, it is possible to eliminate the polishing process to achieve a mirror-like finishing.


2014 ◽  
Vol 541-542 ◽  
pp. 785-791 ◽  
Author(s):  
Joon Young Koo ◽  
Pyeong Ho Kim ◽  
Moon Ho Cho ◽  
Hyuk Kim ◽  
Jeong Kyu Oh ◽  
...  

This paper presents finite element method (FEM) and experimental analysis on high-speed milling for thin-wall machining of Al7075-T651. Changes in cutting forces, temperature, and chip morphology according to cutting conditions are analyzed using FEM. Results of machining experiments are analyzed in terms of cutting forces and surface integrity such as surface roughness and surface condition. Variables of cutting conditions are feed per tooth, spindle speed, and axial depth of cut. Cutting conditions to improve surface integrity were investigated by analysis on cutting forces and surface roughness, and machined surface condition.


2006 ◽  
Vol 315-316 ◽  
pp. 588-592 ◽  
Author(s):  
Wei Zhao ◽  
Ning He ◽  
Liang Li ◽  
Z.L. Man

High speed milling experiments using nitrogen-oil-mist as cutting medium were undertaken to investigate the characteristics of tool wear for Ti-6Al-4V Alloy, a kind of important and commonly used titanium alloy in the aerospace and automobile industries. Uncoated carbide tools have been applied in the experiments. The cutting speed was 300 m/min. The axial depth of cut and the radial depth of cut were kept constant at 5.0 mm and 1.0 mm, respectively. The feed per tooth was 0.1 mm/z. Optical and scanning electron microscopes have been utilized to determine the wear mechanisms of the cutting tools, and energy spectrum analysis has been carried out to measure the elements distribution at the worn areas. Meanwhile, comparisons were made to discuss the influence of different cutting media such as nitrogen-oil-mist and air-oil–mist upon the tool wear. The results of this investigation indicate that the tool life in nitrogen-oil-mist is significantly longer than that in air-oil-mist, and nitrogen-oil-mist is more suitable for high speed milling of Ti-6Al-4V alloy than air-oil-mist.


1999 ◽  
Author(s):  
A. K. Balaji ◽  
I. S. Jawahir

Abstract This paper presents the results of an investigative study on the chip side-curling mechanism and the associated variable tool-chip contact in turning operations. The effect of various cutting and tool geometry parameters such as depth of cut-nose radius ratio, feed, inclination angle, etc. on chip side-curling are established in a hierarchical manner. The importance of variable friction at the tool-chip interface along the developed length of the cutting edge is shown from the experimental observations of the tool-chip contact area using a SEM analysis. The significant influence of the radial cutting force component on the resultant chip side-curl is established using a high speed-filming analysis of comparative experiments in tube and bar turning operations.


2011 ◽  
Vol 418-420 ◽  
pp. 1141-1147
Author(s):  
Yong Liu ◽  
Li Tang Zhang ◽  
Zhi Hong Xu

High-speed milling is recognized as one of rapidly development machining methods. The article gives details of machining experiments with different aluminum alloys. Through a lot of single factor experiments and the orthogonal multi-factor experiments, and also use method of semi-artificial thermocouple. This paper mainly studies influence of surface roughness and residual stress with changed rotate speed, tooth load and radial depth of cut, and changed law of processing temperature for rotate speed. Though experiments shows that enhancing rotate speed may reduce surface roughness and residual stress within certain limits and the result of experiments is not agree with Carl Salomon’s theory.


Sign in / Sign up

Export Citation Format

Share Document