Heat and Mass Transfer in Advanced Batteries

1999 ◽  
Author(s):  
C. Y. Wang ◽  
W. B. Gu ◽  
R. Cullion ◽  
B. Thomas

Abstract This paper presents an overview of heat and mass transfer issues in advanced rechargeable batteries such as nickel-metal hydride (Ni-MH) and lithium-ion (Li-ion) batteries. These batteries are important power sources for ultra-clean, fuel-efficient vehicles and modern portable electronics. Recent demands for environmentally responsible vehicles and strong portable power have prompted fundamental studies of heat and mass transport processes in battery systems in conjunction with electrochemistry and materials science. In this paper, discussions are presented on what are the critical heat and mass transfer issues present in advanced batteries and how these issues affect the battery performance, safety, life cycle, and cost. A theoretical framework describing the transport phenomena with electrochemical reactions is provided. Selected results are presented to illustrate the importance of coupled electrochemical and thermal modeling for advanced batteries. The recent progress is also reviewed in developing and validating battery models at Penn State GATE Center for Advanced Energy Storage.

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1878 ◽  
Author(s):  
Baladev Ash ◽  
Venkata Swamy Nalajala ◽  
Ashok Kumar Popuri ◽  
Tondepu Subbaiah ◽  
Manickam Minakshi

A significant amount of work on electrochemical energy storage focuses mainly on current lithium-ion systems with the key markets being portable and transportation applications. There is a great demand for storing higher capacity (mAh/g) and energy density (Wh/kg) of the electrode material for electronic and vehicle applications. However, for stationary applications, where weight is not as critical, nickel-metal hydride (Mi-MH) technologies can be considered with tolerance to deep discharge conditions. Nickel hydroxide has gained importance as it is used as the positive electrode in nickel-metal hydride and other rechargeable batteries such as Ni-Fe and Ni-Cd systems. Nickel hydroxide is manufactured industrially by chemical methods under controlled conditions. However, the electrochemical route is relatively better than the chemical counterpart. In the electrochemical route, a well-regulated OH− is generated at the cathode forming nickel hydroxide (Ni(OH)2) through controlling and optimizing the current density. It produces nickel hydroxide of better purity with an appropriate particle size, well-oriented morphology, structure, et cetera, and this approach is found to be environmentally friendly. The structures of the nickel hydroxide and its production technologies are presented. The mechanisms of product formation in both chemical and electrochemical preparation of nickel hydroxide have been presented along with the feasibility of producing pure nickel hydroxide in this review. An advanced Ni(OH)2-polymer embedded electrode has been reported in the literature but may not be suitable for scalable electrochemical methods. To the best of our knowledge, no such insights on the Ni(OH)2 synthesis route for battery applications has been presented in the literature.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
I Made Indradjaja M. Brunner ◽  
Satria M. Brunner

Transportation is a sector that contributes significantly to CO2 gas emissions and has the potential to continue to increase along with the addition of fossil fuel vehicles. Indonesia has plans to switch to electric vehicles as an alternative to reduce greenhouse gas (GHG) emissions from the transportation sector. The battery is an important component of an electric vehicle, and there are several alternative technologies that can be used. This paper  simulates the selection of a suitable battery from various type of batteries, including Lead-acid (PbA), Nickel Metal Hydride (NiMH) and Lithium-ion (Li-ion). The selection is made using the weighted objective method by presenting 5 criteria: energy density; emissions generated for battery production; energy factor of the manufacturing process; availability of critical raw materials required for cathodes and anodes; and availability of recycling facilities. Supporting data to determine the magnitude of each criterion is obtained from literature reviews. The analysis and comparison was carried out by giving weight to the assessment based on the data obtained. The results of calculations carried out in the paper show that the Lead-acid battery is a viable option for use at current time.However, if Indonesia already has NiMH and Li-ion battery recycling facilities, or is capable of producing Lithium-ion batteries, then the criteria and calculation factors can be added and improved.


2019 ◽  
Vol 9 (14) ◽  
pp. 2787 ◽  
Author(s):  
Chunlian Wang ◽  
Yongchao Yu ◽  
Jiajia Niu ◽  
Yaxuan Liu ◽  
Denzel Bridges ◽  
...  

With the ever-increasing demand for power sources of high energy density and stability for emergent electrical vehicles and portable electronic devices, rechargeable batteries (such as lithium-ion batteries, fuel batteries, and metal–air batteries) have attracted extensive interests. Among the emerging battery technologies, metal–air batteries (MABs) are under intense research and development focus due to their high theoretical energy density and high level of safety. Although significant progress has been achieved in improving battery performance in the past decade, there are still numerous technical challenges to overcome for commercialization. Herein, this mini-review summarizes major issues vital to MABs, including progress on packaging and crucial manufacturing technologies for cathode, anode, and electrolyte. Future trends and prospects of advanced MABs by additive manufacturing and nanoengineering are also discussed.


Sign in / Sign up

Export Citation Format

Share Document