Environmentally Conscious Investigation of Cutting Fluid Mist Behavior via Particle Image Velocimetry in Turning

2000 ◽  
Author(s):  
Richard Y. Chiou ◽  
Jim S.-J. Chen ◽  
Derrek Cooper ◽  
Cristian Ciuciu

Abstract In this paper, Particle Image Velocimetry (PIV) monitoring approach for cutting fluid mist behavior in machining is proposed. Particle Image Velocimetry is a technique that uses a combination of lasers and a CCD camera to analyze the fluid flow field. Experiments were performed to investigate the transient mist patterns due to the impinging cutting fluid on a rotational workpiece in a turning operation. The measurements displayed the velocity profiles and sizes of the generated fluid mist both in the near-field and far-field. This paper contains the results of a preliminary experiment to measure and analyze mist generation mechanism on a lathe. The experimental investigation concerning the mist behavior in a turning operation can be used as basis for human exposure and health hazard analysis. Some preliminary results were obtained and recommendations were made for future research.

Author(s):  
Christopher Pagano ◽  
Flavia Tauro ◽  
Salvatore Grimaldi ◽  
Maurizio Porfiri

Large scale particle image velocimetry (LSPIV) is a nonintrusive environmental monitoring methodology that allows for continuous characterization of surface flows in natural catchments. Despite its promise, the implementation of LSPIV in natural environments is limited to areas accessible to human operators. In this work, we propose a novel experimental configuration that allows for unsupervised LSPIV over large water bodies. Specifically, we design, develop, and characterize a lightweight, low cost, and stable quadricopter hosting a digital acquisition system. An active gimbal maintains the camera lens orthogonal to the water surface, thus preventing severe image distortions. Field experiments are performed to characterize the vehicle and assess the feasibility of the approach. We demonstrate that the quadricopter can hover above an area of 1×1m2 for 4–5 minutes with a payload of 500g. Further, LSPIV measurements on a natural stream confirm that the methodology can be reliably used for surface flow studies.


Author(s):  
Hirotaka Takeuchi ◽  
Yuji Tasaka ◽  
Yuichi Murai ◽  
Yasushi Takeda ◽  
Hideaki Tezuka ◽  
...  

Particle image velocimetry is applied to measurement of airflows around three types of permeable circular cylinders. The experimental model of the permeable cylinder is made of squared meshed sheet rolled in circle. Water mist smoke is used as air tracer, which is generated with dry ice in a chamber to produce fine spatial density fluctuation for guaranteeing the PIV quality. Since the flow involves fluctuation in a very wide wavenumber from the cylinder size to mesh-dependent eddies, calculating brightness spectrum quantitatively assesses the smoke image quality. The experiment is carried out in an open type wind tunnel. The following results are obtained when the measurement results are compared to those of a solid cylinder. 1: The flow just behind the cylinder has forward velocity due to the permeability while the solid cylinder has reverse flow in the wake. This feature relaxes near field excitation of Karman vortex shedding. 2: The reattachment point behind the cylinder displaces several times as the solid case. As a result of the above two phenomena, the peak potion of the turbulence energy appears in the far downstream region as the permeability of the cylinder increases.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Guoqing Chen ◽  
Le Li ◽  
Cong Zhao ◽  
Runqiu Huang ◽  
Fan Guo

The Particle Image Velocimetry (PIV) technique with high precision and spatial resolution is a suitable sensor for flow field experiments. In this paper, the PIV technology was used to monitor the development of a displacement field, velocity field and acceleration field of a rock slide. It was found that the peak acceleration of the sliding surface appeared earlier than the peak acceleration of the sliding body. The characteristics of the rock slide including the short failure time, high velocities, and large accelerations indicate that the sliding forces and energy release rate of the slope are high. The deformation field showed that the sliding body was sliding outwards along the sliding surface while the sliding bed moved in an opposite direction. Moving upwards at the top of the sliding bed can be one of the warning signs for rock slide failure.


Author(s):  
Harekrishna Yadav ◽  
Atul Srivastava ◽  
Amit Agrawal

An experimental investigation has been performed to determine the flow characteristics of an axisymmetric submerged water jet with superimposed periodically oscillating flow. The objective of the study is to quantify in detail the near field of a pulsating jet using the particle image velocimetry (PIV) technique. The amplitude and frequency of oscillations are varied separately and the effect of each parameter is determined for a range of Reynolds numbers (ReD = 1602, 2318, and 3600). The experimental results indicate that for a given Reynolds number and amplitude, with an increase in the frequency of pulsation, the vortex formation shifts toward the nozzle exit. The number of vortices also increases with an increase in the jet pulsation frequency. Broadening of the jet and shortening of the potential core length are also observed. This indicates that mixing with the surrounding fluid is higher with pulsating jet even at relatively low Reynolds numbers. It is observed that frequency up to a critical frequency helps increase entrainment of the surrounding fluid. An upper critical frequency beyond which pulsation does not affect the entrainment is also determined. These results should eventually lead to a better understanding of the physical phenomena responsible for enhanced heat transfer rates in the presence of pulsating jets.


Author(s):  
G. Chaine ◽  
D. E. Nikitopoulos

A particle image velocimetry (PIV) technique developed for application to two-phase flows is presented and validated. The technique is capable of simultaneously measuring carrier and bubble phase velocities on a plane. The validation experiments have been conducted in a vertical upwards, two-phase (water-air) bubbly jet flow at a Reynolds numbers of 5,673 and 11,345 and low bubble concentration matching the experiments of Stanley and Nikitopoulos (1998). Comparisons with measurements obtained by Stanley and Nikitopoulos (1998) using Phase Doppler Analysis (PDA) experiments indicate that the agreement between the two techniques is very satisfactory (deviations of the order of 5%) for both single-phase and two-phase jet carrier-flow velocities. In addition, bubble phase velocity measurements obtained from backlit visualizations of the bubbly jet flow using the bubble-tracking method of Fiedler et al. (2001) are successfully compared to those obtained from PIV. The PIV study confirms that bubbles experience a substantial deceleration in the unmixed core of the jet near field and illustrates carrier-phase mean-flow modification consistent with past point-wise measurements.


2015 ◽  
Vol 773-774 ◽  
pp. 403-407 ◽  
Author(s):  
E.A. Rahim ◽  
Hemarani Dorairaju ◽  
Norzilawati Asmuin ◽  
M.H.A.R. Mantari

In recent years, minimum quantity lubrication (MQL) machining is regarded as a promising method for reducing machining cost and cutting fluid, while improving cutting performance. However the effectiveness and the working principle of MQL are still questionable with very few explanations provided. The aim of this study is to determine the optimum distance between the nozzle and tool tip and appropriate flow pattern of the mist flow for minimum quantity lubricant using Particle Image Velocimetry (PIV) and Computer Fluid Dynamic (CFD) for optimizing the spraying conditions thus reducing the lubricant consumption. The spray from the nozzle with outlet diameter of 2.5mm is analysed using Particle Image Velocimetry (PIV) to measure the mist flow velocity and identify the flow pattern. The input pressure of 0.2, 0.3 and 0.4MPa will be discharged throughout the experiment. Higher pressure produce more mass flow rate which helps in reducing the cutting force and cutting temperature efficiently and prolong tool life. Thus the appropriate distance can reduce lubricant consumption and increase the cooling and lubricating ability with best nozzle position. The applied distance increases the efficiencies of MQL applied during machining process.


Sign in / Sign up

Export Citation Format

Share Document