Symmetry Breaking in ER and MR Fluids Under Shear

2000 ◽  
Author(s):  
R. Tao ◽  
J. Zhang ◽  
Y. Shiroyanagi ◽  
X. Tang ◽  
X. Zhang

Abstract The behavior of an electtorheological (ER) chain under a shear force is investigated theoretically and experimentally. Contrary to the conventional assumption that the ER chain under a shear force becomes slanted and breaks at the middle, we have found that there is symmetry breaking. When the shear strain is small, the chain becomes slanted with a space gap between the first and second particles (or between the last and next last particles). As the shear strain increases, the gap becomes wider and wider. When the shear strain exceeds a critical value, the chain breaks at the gap. The experiment also confirms that an ER chain under the shear breaks at either end, not at the middle. This symmetry breaking reflects the space’s anisotropy, which is the result of the applied electric field.

2001 ◽  
Vol 15 (06n07) ◽  
pp. 918-929 ◽  
Author(s):  
R. Tao ◽  
J. Zhang ◽  
Y. Shiroyanagi ◽  
X. Tang ◽  
X. Zhang

The behavior of an electrorheological (ER) chain under a shear force is investigated theoretically and experimentally. Contrary to the conventional assumption that the ER chain under a shear force becomes slanted and breaks at the middle, we have found that there is symmetry breaking. When the shear strain is small, the chain becomes slanted with a space gap between the first and second particles (or between the last and next last particles). As the shear strain increases, the gap becomes wider and wider. When the shear strain exceeds a critical value, the chain breaks at the gap. The experiment also confirms that an ER chain under the shear breaks at either end, not at the middle. This symmetry breaking reflects the space's anisotropy, which is the result of the applied electric field.


2002 ◽  
Vol 16 (17n18) ◽  
pp. 2341-2344 ◽  
Author(s):  
BRETT RILEY ◽  
ANIKET BHATTACHARYA ◽  
MICHAEL JOHNSON ◽  
XIAODONG DUAN ◽  
WEILI LUO

A lamellar pattern can form in a thin magnetic fluid layer when the applied electric field is above a critical value. A 2D simulation is performed to study the field-induced phase separation and the pattern by using the mass continuity equation. The simulation produces the similar structure in field but does not match the experimental growth law.


1994 ◽  
Vol 08 (20n21) ◽  
pp. 2895-2902 ◽  
Author(s):  
YING CHEN ◽  
H. CONRAD

The force required to shear one-, two- and three-chain clusters of 230 µm dia. glass beads in silicone oil was measured. In each case the shear force was proportional to the shear strain, the proportionality constant increasing with electric field and number n of chains in the cluster. The derived shear modulus G also increased with n. An extrapolation of the present results suggests that a cluster of 4–5 chains would give the stress enhancement factor of 10–20 observed for real ER fluids.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 417
Author(s):  
Jianyu Ji ◽  
Shizhi Qian ◽  
Zhaohui Liu

Electroosmotic flow (EOF) has been widely used in various biochemical microfluidic applications, many of which use viscoelastic non-Newtonian fluid. This study numerically investigates the EOF of viscoelastic fluid through a 10:1 constriction microfluidic channel connecting two reservoirs on either side. The flow is modelled by the Oldroyd-B (OB) model coupled with the Poisson–Boltzmann model. EOF of polyacrylamide (PAA) solution is studied as a function of the PAA concentration and the applied electric field. In contrast to steady EOF of Newtonian fluid, the EOF of PAA solution becomes unstable when the applied electric field (PAA concentration) exceeds a critical value for a fixed PAA concentration (electric field), and vortices form at the upstream of the constriction. EOF velocity of viscoelastic fluid becomes spatially and temporally dependent, and the velocity at the exit of the constriction microchannel is much higher than that at its entrance, which is in qualitative agreement with experimental observation from the literature. Under the same apparent viscosity, the time-averaged velocity of the viscoelastic fluid is lower than that of the Newtonian fluid.


2015 ◽  
Vol 17 (29) ◽  
pp. 19215-19221 ◽  
Author(s):  
Ashok Kumar ◽  
Haiying He ◽  
Ravindra Pandey ◽  
P. K. Ahluwalia ◽  
K. Tankeshwar

Band-gap (Eg)vs.applied electric field (E) for T- and H-bilayers, showing complete metallization at the critical value of the electric field.


1972 ◽  
Vol 33 (C1) ◽  
pp. C1-63-C1-67 ◽  
Author(s):  
M. BERTOLOTTI ◽  
B. DAINO ◽  
P. Di PORTO ◽  
F. SCUDIERI ◽  
D. SETTE

2012 ◽  
Vol 15 (2-3) ◽  
pp. 127-139
Author(s):  
Tung Tran Anh ◽  
Laurent Berquez ◽  
Laurent Boudou ◽  
Juan Martinez-Vega ◽  
Alain Lacarnoy

2008 ◽  
Vol 75 (1) ◽  
Author(s):  
Q. Li ◽  
Y. H. Chen

A semi-permeable interface crack in infinite elastic dielectric/piezoelectric bimaterials under combined electric and mechanical loading is studied by using the Stroh complex variable theory. Attention is focused on the influence induced from the permittivity of the medium inside the crack gap on the near-tip singularity and on the energy release rate (ERR). Thirty five kinds of such bimaterials are considered, which are constructed by five kinds of elastic dielectrics and seven kinds of piezoelectrics, respectively. Numerical results for the interface crack tip singularities are calculated. We demonstrate that, whatever the dielectric phase is much softer or much harder than the piezoelectric phase, the structure of the singular field near the semi-permeable interface crack tip in such bimaterials always consists of the singularity r−1∕2 and a pair of oscillatory singularities r−1∕2±iε. Calculated values of the oscillatory index ε for the 35 kinds of bimaterials are presented in tables, which are always within the range between 0.046 and 0.088. Energy analyses for five kinds of such bimaterials constructed by PZT-4 and the five kinds of elastic dielectrics are studied in more detail under four different cases: (i) the crack is electrically conducting, (ii) the crack gap is filled with air/vacuum, (iii) the crack gap is filled with silicon oil, and (iv) the crack is electrically impermeable. Detailed comparisons on the variable tendencies of the crack tip ERR against the applied electric field are given under some practical electromechanical loading levels. We conclude that the different values of the permittivity have no influence on the crack tip singularity but have significant influences on the crack tip ERR. We also conclude that the previous investigations under the impermeable crack model are incorrect since the results of the ERR for the impermeable crack show significant discrepancies from those for the semi-permeable crack, whereas the previous investigations under the conducting crack model may be accepted in a tolerant way since the results of the ERR show very small discrepancies from those for the semi-permeable crack, especially when the crack gap is filled with silicon oil. In all cases under consideration the curves of the ERR for silicon oil are more likely tending to those for the conducting crack rather than to those for air or vacuum. Finally, we conclude that the variable tendencies of the ERR against the applied electric field have an interesting load-dependent feature when the applied mechanical loading increases. This feature is due to the nonlinear relation between the normal electric displacement component and the applied electromechanical loadings from a quadratic equation.


The Analyst ◽  
2020 ◽  
Vol 145 (6) ◽  
pp. 2412-2419 ◽  
Author(s):  
Rachel N. Deraney ◽  
Lindsay Schneider ◽  
Anubhav Tripathi

NA extraction and purification utilitzing a microfluidic chip with applied electric field to induce electroosmotic flow opposite the magnetic NA-bound bead mix.


Sign in / Sign up

Export Citation Format

Share Document