subsurface zone
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 14)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
Vol 16 (4) ◽  
pp. 68-74
Author(s):  
Petr Smirnov ◽  
Alexey Terentyev ◽  
Nikolay Pushkarenko ◽  
Mihail Smirnov ◽  
Ayrat Valiev ◽  
...  

At present, the preparation of the soil for the hop plant with machines of traditional hop production technology is unrealistic, since there are no more hops and no one is producing them. In this regard, a progressive technology for growing hops and promising machines for them, including for energy-saving tillage for hops, have been proposed. As the main cultivation, two-strip soil cultivation was used for rows of hops with a combined subsoiler-drener developed at the Chuvash State Agrarian University. Moreover, loosening is carried out with the simultaneous introduction of liquefied litterless manure with a dose of 100-120 t / ha to the subsurface zone from 0.20 to 0.60 m. In the soil, liquefied litterless manure fills the drainage canal and the soil pores adjacent to the canal, activates the activity of microorganisms and soil biochemical processes. Row loosening with a combined machine allows to reduce the energy consumption of processing by 57% compared to continuous plowing with plantation plows and to exclude the operation of applying bedding manure with subsequent moldboard embedding. As a pre-planting soil preparation, cultivation with combined stubble cultivators of the KST-3,8 type and its analogues with the incorporation of crushed green manure (up to 75%), high-quality leveling and crumbling of the soil is proposed. Stirring and leveling of the field surface is provided by afrontal discs behind the last row of flat-cut tines, crumbling - by a ribbed roller. The maneuverability of such a cultivator in the cramped conditions of the hop is taken into account. Replacement of plowing operations with general purpose plows and subsequent leveling by a cultivator allows an additional 45-50% reduction in the energy intensity of pre-planting soil cultivation. The main energy source in the main tillage is the tractor BTZ-243k


Author(s):  
I. A. Guzova ◽  
N. A. Hodosovskaya ◽  
I. A. Kovaleva

High quality of purchased resources plays a critical role under the conditions of severe international competition. Raw materials, materials and components are purchase for product production and their quality is an essential part in the production of steel at OJSC “BSW – Management Company of the Holding “BMC” holding». The problem of excessively high level of dynamic loads is especially acute for roughing stands. The main reasons for dynamic overloads are intense transient processes occurring in the rolling cycle, the presence of elastic constraints and gaps in the system, imperfection of electric drive system and errors made during development. Therefore, there is a need for selection of material and manufacturing technology for mill rolls capable to withstand such loads for a sufficiently long period. Investigations of destruction causes of experimental mill roll of stand roughing group of mill 150 of section rolling shop at OJSC “BSW – Management Company of the Holding “BMC” holding were carried out. Main classification features are established based on the analysis of the fracture. The results of metallographic studies of microstructure and chemical composition of central and subsurface zone roll fragments are presented. The reason of destruction of experimental mill roll was discovered – nonconformance of roll material grade with the requirements of technological instructions and normative documentation for rough group of stands No. 1–3


Author(s):  
Jerzy Dryzek

The report presents the positron annihilation studies of subsurface zone generated in pure titanium exposed to a long period dry sliding test. The total depth of the subsurface zone induced is detected at about 250 µm. Only dislocations and vacancy clusters which consist of two or three vacancies are observed in this zone. Their concentration decreases with the depth, especially at the depth above 100 µm. Despite the long duration of the sliding test, no clear signs indicating the presence of a tribolayer were observed. This was confirmed also by observation of annealing of defects in this zone at different depths. The lack of the tribolayer is in contrast to the research done so far for other metals.


Author(s):  
B. Öztürk ◽  
L. Mengis ◽  
D. Dickes ◽  
U. Glatzel ◽  
M. C. Galetz

AbstractThe Ti-6Al-4V alloy is extensively used in aerospace, automotive and biomaterial applications. In the aerospace industry, the service temperature of Ti-6Al-4V is currently limited to 350 °C due to its insufficient oxidation resistance. Oxidation at higher temperatures causes the formation of a fast-growing oxide scale and an oxygen-enriched subsurface layer, which is known as the “alpha-case.” Additionally, the effect of water vapor on the oxidation behavior is critical. In the present study, the oxidation behavior of Ti-6Al-4V in dry air and air containing 10 vol.% H2O at 500, 600 and 700 °C for up to 500 h has been investigated. The main focus of this study is the examination of the different oxide scale morphologies along with the oxygen enrichment in the subsurface zone. It has been observed that spallation of the oxide scale is more severe in a water vapor-containing environment. In dry air, the oxide morphology shows the typical layered TiO2/Al2O3 structure after exposure at 700 °C for 300 h, while Al2O3 precipitates are present in the outermost part of the TiO2 scale when oxidized in wet air. This indicates that the solubility and diffusivity of Al3+ ions in TiO2 are influenced by water vapor. In addition, the extent of oxygen enrichment in the subsurface zone (alpha-case) as a function of temperature and time is determined by nanoindentation profiles. It was shown that in contrast to the scale formation, the alpha-case thickness is not affected by the presence of water vapor in the atmosphere.


2021 ◽  
Vol 5 (4) ◽  
pp. 120
Author(s):  
Jan Nickel ◽  
Nikolas Baak ◽  
Pascal Volke ◽  
Frank Walther ◽  
Dirk Biermann

The fatigue behavior of components made of quenched and tempered steel alloys is of elementary importance, especially in the automotive industry. To a great extent, the components’ fatigue strength is influenced by the surface integrity properties. For machined components, the generated surface is often exposed to the highest thermomechanical loads, potentially resulting in transformations of the subsurface microstructure and hardness as well as the residual stress state. While the measurement of the mechanical load using dynamometers is well established, in-process temperature measurements are challenging, especially for drilling processes due to the process kinematics and the difficult to access cutting zone. To access the impact of the thermomechanical load during the single-lip drilling process on the produced surface integrity, an in-process measurement was developed and applied for different cutting parameters. By using a two-color pyrometer for temperature measurements at the tool’s cutting edge in combination with a dynamometer for measuring the occurring force and torque, the influence of different cutting parameter variations on the thermomechanical impact on the bore surface are evaluated. By correlating force and temperature values with the resultant surface integrity, a range of process parameters can be determined in which the highest dynamic strength of the samples is expected. Thermally induced defects, such as the formation of white etching layers (WEL), can be avoided by the exact identification of critical parameter combinations whereas a mechanically induced microstructure refinement and the induction of residual compressive stresses in the subsurface zone is targeted. Further, eddy-current analysis as a non-destructive method for surface integrity evaluation is used for the characterization of the surface integrity properties.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1764
Author(s):  
Cyprian Illing ◽  
Zhe Ren ◽  
Anna Agaponova ◽  
Arthur Heuer ◽  
Frank Ernst

For rapid surface engineering of Cr-containing alloys by low-temperature nitrocarburization, we introduce a process based on pyrolysis of solid reagents, e.g., urea, performed in an evacuated closed vessel. Upon heating to temperatures high enough for rapid diffusion of interstitial solute, but low enough to avoid second-phase precipitation, the reagent is pyrolyzed to a gas atmosphere containing molecules that (i) activate the alloy surface by stripping away the passivating Cr2O3-rich surface film (diffusion barrier) and (ii) rapidly infuse carbon and nitrogen into the alloy. We demonstrate quantitatively that this method can generate a subsurface zone with concentrated carbon and nitrogen comparable to what can be accomplished by established (e.g., gas-phase- or plasma-based) methods, but with significantly reduced processing time. As another important difference to established gas-phase processing, the interaction of gas molecules with the alloy surface can have auto-catalytic effects by altering the gas composition in a way that accelerates solute infusion by providing a high activity of HNCO. The new method lends itself to rapid experimentation with a minimum of laboratory equipment.


2020 ◽  
Vol 87 (11) ◽  
pp. 704-713
Author(s):  
Lara Vivian Fricke ◽  
Hai Nam Nguyen ◽  
Bernd Breidenstein ◽  
Berend Denkena ◽  
Marc-André Dittrich ◽  
...  

AbstractIn order to withstand high mechanical and tribological loads, it is important that the components not only have a high core ductility but also a hard surface. Typically, a suitable microstructure is created by heat treatment processes before the workpiece is machined. However, these processes are time and energy consuming and can lead to component distortion. It would therefore be of great advantage if no additional heat treatment process would be required to produce a hardened subsurface zone. Since turning is often already integrated as a machining process in production lines, it would be advantageous to create a hardened subsurface within this process. As there is no possibility to measure the hardness directly during the turning process, a soft sensor was developed to determine the properties of the subsurface directly during the machining process. Steels with metastable austenite are of particular interest in this context, as metastable austenite can be converted into martensite by deformation. The amount of martensite produced in the subsurface can be adjusted provided that suitable turning parameters can be found. For this purpose, a process parallel material removal simulation was used to determine the actual conditions governing the process. It was found that there is a correlation between the martensite content and the amplitude of the 3rd harmonic of eddy current testing. Therefore, an eddy current sensor accompanying the process can be used as a basis for controlling the turning process for tailored martensite volume content adjustment.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1324
Author(s):  
Zhe Ren ◽  
Frank Ernst

To understand the effect of surface machining on the resistance of AISI 316L to SCC (stress–corrosion cracking) in marine environments, we tested nuts surface-machined by different methods in a seawater-spraying chamber. Two forms of cracks were observed: on the machined surface and underneath it. On the surface, cracks connected with the pitting sites were observed to propagate perpendicular to the hoop-stress direction, identifying them as stress–corrosion cracks. Under the surface, catastrophic transgranular cracks developed, likely driven by hydrogen embrittlement caused by the chloride-concentrating level of humidity in the testing environment. Under constant testing conditions, significantly different SCC resistance was observed depending on how the nuts had been machined. Statistical evaluation of the nut surface-crack density indicates that machining by a “form” tool yields a crack density one order of magnitude lower than machining by a “single-point” tool. Microstructural analysis of form-tool-machined nuts revealed a homogeneous deformed subsurface zone with nanosized grains, leading to enhanced surface hardness. Apparently, the reduced grain size and/or the associated mechanical hardening improve resistance to SCC. The nanograin subsurface zone was not observed on nuts machined by a single-point tool. Surface roughness measurements indicate that single-point-tool-machined nuts have a rougher surface than form-tool machined nuts. Apparently, surface roughness reduces SCC resistance by increasing the susceptibility to etch attack in Cl--rich solutions. The results of X-ray diffractometry and transmission electron microscopy diffractometry indicate that machining with either tool generates a small volume fraction (< 0.01) of strain-induced martensite. However, considering the small volume fraction and absence of martensite in regions of cracking, martensite is not primarily responsible for SCC in marine environments.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3725
Author(s):  
Zhouyiao Zou ◽  
Yanpeng Hao ◽  
Yao Zheng ◽  
Weiming He ◽  
Fangyuan Tian ◽  
...  

Internal stress in basin insulators of gas-insulated metal-enclosed switchgear (GIS) can lead to cracks, which affects the safe operation of these apparatuses. In this research, we proposed a subsurface internal stress measurement method for GIS epoxy composites. This method is based on an ultrasonic longitudinal critically refracted (LCR) wave technique. In this study, some epoxy composite specimens were synthesized with similar materials and manufacturing processes to those of 252 kV GIS basin insulators. An ultrasonic stress measurement system that utilized the LCR wave technique was set-up to investigate the relationship between stress and LCR wave propagation time, as well as to measure the compressive stress of the epoxy specimen within 0–50 MPa. The results show that LCR wave propagation time linearly decreased when stress increased in the subsurface zone and the acoustoelastic coefficient was −4.95. We found the relative errors of stress measurements to be less than 13%.


Sign in / Sign up

Export Citation Format

Share Document