Computer Controlled Braking System for Amtrak High Speed Trainsets

2002 ◽  
Author(s):  
Kenneth R. Hesser ◽  
Gregory A. Gagarin

The new Amtrak High Speed Trainsets used in ACELA Express service on the Northeast Corridor are equipped with an advanced microprocessor controlled braking system with full pneumatic control back-up protection. The system is designed to provide high reliability, to prioritize high levels of electric braking from power cars on each end of the trainset and to fully blend electric braking effort with the pneumatic friction braking effort of the entire trainset. This type of control which optimizes power conservation through regenerative braking and decreases wear and thermal stress on friction brake components is similar to that used on the German Railways ICE trainsets but is totally new and unique to North American inter-city rail vehicles. This paper will describe the system, special components and performance of this equipment.

The high-speed trains are eight times more efficient than traditional trains because it significantly operates faster than the other trains; however, the train accidents are happened as because of its poor braking system. From this reason, effective braking system control techniques are developed. In this paper, the electric brake regenerative system is introduced to control the high-speed train. Therefore the braking system of a high-speed train is modeled in Brushless Direct Current (BLDC) motor, which is controlled by the gain of Proportional Resonant (PR) controller. Subsequently, the parameters of the controller and error percentage from the controller in the braking system are optimized using Multi-Objective African Buffalo Optimization (MOABO). The developed controller in braking system stability is analyzing by the Lyapunov function. The results of the braking system are validating by the torque and speed of the high-speed train braking system. Furthermore, the proposed high-speed braking system control is compared with existing control techniques in a high-speed train.


2019 ◽  
Vol 294 ◽  
pp. 03013
Author(s):  
Sylwin Tomaszewski ◽  
Franciszek Tomaszewski ◽  
Włodzimierz Stawecki ◽  
Patryk Urbański ◽  
Mariusz Far ◽  
...  

The article presents the functions of the relay valve and its place in brake systems of rail vehicles. The relay valve were divided according to their type, the structure and principle of their operation were discussed, and examples of rail vehicles and modules in which relay valves are installed are presented. Because of their function in braking systems the relay valves should be characterized by high reliability and correct carrying out the tasks in the braking system of rail vehicles. The article describes selected structural factors affecting the operation of the relay valve and which are important for ensuring the safety of train traffic. Such factors are the lubricants used in the relay valves and the way of controlling it simultaneously with two signals with the function of an alternative that eliminates unreliable elements of the braking system. The analysis of the test results of the lubricant parameters and the testing of the relay valves on the test bench showed that the correctness of the relay valves depends essentially on the properties of the lubricant used, especially at low temperatures. On the basis of the tests carried out, a grease was selected that at low temperatures meets the criteria for correct and reliable operation of relay valves in rail vehicles. In terms of the control method, a comparison of two control signal delivery systems to the relay valve has been made, a new design solution is presented that ensures greater operational reliability and thus greater safety of the train traffic.


Author(s):  
Robert W. Mackin

This paper presents two advances towards the automated three-dimensional (3-D) analysis of thick and heavily-overlapped regions in cytological preparations such as cervical/vaginal smears. First, a high speed 3-D brightfield microscope has been developed, allowing the acquisition of image data at speeds approaching 30 optical slices per second. Second, algorithms have been developed to detect and segment nuclei in spite of the extremely high image variability and low contrast typical of such regions. The analysis of such regions is inherently a 3-D problem that cannot be solved reliably with conventional 2-D imaging and image analysis methods.High-Speed 3-D imaging of the specimen is accomplished by moving the specimen axially relative to the objective lens of a standard microscope (Zeiss) at a speed of 30 steps per second, where the stepsize is adjustable from 0.2 - 5μm. The specimen is mounted on a computer-controlled, piezoelectric microstage (Burleigh PZS-100, 68/μm displacement). At each step, an optical slice is acquired using a CCD camera (SONY XC-11/71 IP, Dalsa CA-D1-0256, and CA-D2-0512 have been used) connected to a 4-node array processor system based on the Intel i860 chip.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4705
Author(s):  
Julian Lich ◽  
Tino Wollmann ◽  
Angelos Filippatos ◽  
Maik Gude ◽  
Juergen Czarske ◽  
...  

Due to their lightweight properties, fiber-reinforced composites are well suited for large and fast rotating structures, such as fan blades in turbomachines. To investigate rotor safety and performance, in situ measurements of the structural dynamic behaviour must be performed during rotating conditions. An approach to measuring spatially resolved vibration responses of a rotating structure with a non-contact, non-rotating sensor is investigated here. The resulting spectra can be assigned to specific locations on the structure and have similar properties to the spectra measured with co-rotating sensors, such as strain gauges. The sampling frequency is increased by performing consecutive measurements with a constant excitation function and varying time delays. The method allows for a paradigm shift to unambiguous identification of natural frequencies and mode shapes with arbitrary rotor shapes and excitation functions without the need for co-rotating sensors. Deflection measurements on a glass fiber-reinforced polymer disk were performed with a diffraction grating-based sensor system at 40 measurement points with an uncertainty below 15 μrad and a commercial triangulation sensor at 200 measurement points at surface speeds up to 300 m/s. A rotation-induced increase of two natural frequencies was measured, and their mode shapes were derived at the corresponding rotational speeds. A strain gauge was used for validation.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 697
Author(s):  
Hanqing Xu ◽  
Weijun Fan ◽  
Jianwei Feng ◽  
Peiliang Yan ◽  
Shuchan Qi ◽  
...  

Flame monitoring of industrial combustors with high-reliability sensors is essential to operation security and performance. An ion current flame sensor with a simple structure has great potential to be widely used, but a weak ion current is the critical defect to its reliability. In this study, parameters of the ion current sensor used for monitoring flames on a Bunsen burner are suggested, and a method of further improving the ion current is proposed. Effects of the parameters, including the excitation voltage, electrode area, and electrode radial and vertical positions on the ion current, were investigated. The ion current grew linearly with the excitation voltage. Given that the electrodes were in contact with the flame fronts, the ion current increased with the contact area of the cathode but independent of the contact area of the anode. The smaller electrode radial position resulted in a higher ion current. The ion current was insensitive to the anode vertical position but largely sensitive to the cathode vertical position. Based on the above ion current regularities, the sensor parameters were suggested as follows: The burner served as a cathode and the platinum wire acted as an anode. The excitation voltage, anode radial and vertical positions were 120 V, 0 mm, and 6 mm, respectively. The method of further improving the ion current by adding multiple sheet cathodes near the burner exit was proposed and verified. The results show that the ion current sensor with the suggested parameters could correctly identify the flame state, including the ignition, combustion, and extinction, and the proposed method could significantly improve the magnitude of the ion current.


Machines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Jing Wang ◽  
Zhihua Wan ◽  
Zhurong Dong ◽  
Zhengguo Li

The harmonic reducer, with its advantages of high precision, low noise, light weight, and high speed ratio, has been widely used in aerospace solar wing deployment mechanisms, antenna pointing mechanisms, robot joints, and other precision transmission fields. Accurately predicting the performance of the harmonic reducer under various application conditions is of great significance to the high reliability and long life of the harmonic reducer. In this paper, a set of automatic harmonic reducer performance test systems is designed. By using the CANOpen bus interface to control the servo motor as the drive motor, through accurately controlling the motor speed and rotation angle, collecting the angle, torque, and current in real time, the life cycle test of space harmonic reducer was carried out in high vacuum and low temperature environment on the ground. Then, the collected data were automatically analyzed and calculated. The test data of the transmission accuracy, backlash, and transmission efficiency of the space harmonic reducer were obtained. It is proven by experiments that the performance data of the harmonic reducer in space work can be more accurately obtained by using the test system mentioned in this paper, which is convenient for further research on related lubricating materials.


Sign in / Sign up

Export Citation Format

Share Document