scholarly journals A Coal-Fired Power Plant With Zero Atmospheric Emissions

Author(s):  
Joel Martinez-Frias ◽  
Salvador M. Aceves ◽  
J. Ray Smith ◽  
Harry Brandt

This paper presents the thermodynamic analysis of a coal-based zero-atmospheric emissions electric power plant. The approach involves an oxygen-blown coal gasification unit. The resulting synthetic gas (syngas) is combusted with oxygen in a gas generator to produce the working fluid for the turbines. The combustion produces a gas mixture composed almost entirely of steam and carbon dioxide. These gases drive multiple turbines to produce electricity. The turbine discharge gases pass to a condenser where water is captured. A stream of carbon dioxide then results that can be used for enhanced oil recovery, or for sequestration. This analysis is based on a 400 MW electric power generating plant that uses turbines that are currently under development by a U.S. turbine manufacturer. The power plant has a net thermal efficiency of 42.6%. This efficiency is based on the lower heating value of the coal, and includes the energy necessary for coal gasification, air separation and for carbon dioxide separation and sequestration. The paper also presents an analysis of the cost of electricity (COE) and the cost of conditioning carbon dioxide for sequestration for the 400 MW power plant. Electricity cost is compared for three different gasification processes (Texaco, Shell, and Koppers-Totzek) and two types of coals (Illinois #6 and Wyodak). Cost of electricity ranges from 5.16 ¢/kWhr to 5.42 ¢/kWhr, indicating very little sensitivity to the gasification processes considered and the coal types used.

Author(s):  
Joel Martinez-Frias ◽  
Salvador M. Aceves ◽  
J. Ray Smith ◽  
Harry Brandt

This paper presents the thermodynamic and cost analysis of a coal-based zero-atmospheric emissions electric power plant. The approach involves an oxygen-blown coal gasification unit. The resulting synthetic gas (syngas) is combusted with oxygen in a gas generator to produce the working fluid for the turbines. The combustion produces a gas mixture composed almost entirely of steam and carbon dioxide. These gases drive multiple turbines to produce electricity. The turbine discharge gases pass to a condenser where water is captured. A stream of carbon dioxide then results that can be used for enhanced oil recovery or for sequestration. The term zero emission steam technology is used to describe this technology. We present the analysis of a 400MW electric power plant. The power plant has a net thermal efficiency of 39%. This efficiency is based on the lower heating value of the coal, and includes the energy necessary for coal gasification, air separation, and for carbon dioxide separation and sequestration. This paper also presents an analysis of the cost of electricity and the cost of conditioning carbon dioxide for sequestration. Electricity cost is compared for three different gasification processes (Texaco, Shell, and Koppers-Totzek) and two types of coals (Illinois 6 and Wyodak). COE ranges from 5.95¢∕kWhto6.15¢∕kWh, indicating a 3.4% sensitivity to the gasification processes considered and the coal types used.


Author(s):  
Joel Martinez-Frias ◽  
Salvador M. Aceves ◽  
J. Ray Smith ◽  
Harry Brandt

This paper presents a thermodynamic analysis of a natural gas zero-atmospheric emissions power plant with a net electrical output of 400 MW. In this power plant, methane is combusted with oxygen in a gas generator to produce the working fluid for the turbines. The combustion produces a gas mixture composed of steam and carbon dioxide. These gases drive multiple turbines to produce electricity. The turbine discharge gases pass to a condenser where water is captured as liquid and gaseous carbon dioxide is pumped from the system. The carbon dioxide can be economically conditioned for enhanced recovery of oil, or coal-bed methane, or for sequestration in a subterranean formation. The analysis considers a complete power plant layout, including an air separation unit, compressors and intercoolers for oxygen and methane compression, a gas generator, three steam turbines, a reheater, a preheater, a condenser, and a carbon dioxide pumping system to pump the carbon dioxide to the pressure required for sequestration. The computer code is a powerful tool for estimating the efficiency of the plant, given different configurations and technologies. The efficiency of the power plant has been calculated over a wide range of conditions as a function of the two important power plant parameters of turbine inlet temperature and turbine isentropic efficiency. This simulation is based on a 400 MW electric power generating plant that uses turbines that are currently under development by a U.S. turbine manufacturer. The high-pressure turbine would operate at a temperature of 1089 K (1500 °F) with uncooled blades, the intermediate-pressure turbine would operate at 1478 K (2200 °F) with cooled blades and the low-pressure turbine would operate at 998 K (1336 °F). The corresponding turbine isentropic efficiencies for these three turbines were taken as 90, 91 and 93 percent. With these operating conditions, the zero-atmospheric emissions electric power plant has a net thermal efficiency of 46.5%. This net thermal efficiency is based on the lower heating value of methane, and includes the energy necessary for air separation and for carbon dioxide separation and sequestration.


2004 ◽  
Vol 126 (1) ◽  
pp. 2-8 ◽  
Author(s):  
Joel Martinez-Frias ◽  
Salvador M. Aceves ◽  
J. Ray Smith ◽  
Harry Brandt

This paper presents a theoretical thermodynamic analysis of a zero-atmospheric emissions power plant. In this power plant, methane is combusted with oxygen in a gas generator to produce the working fluid for the turbines. The combustion produces a gas mixture composed of steam and carbon dioxide. These gases drive multiple turbines to produce electricity. The turbine discharge gases pass to a condenser where water is captured. A stream of pure carbon dioxide then results that can be used for enhanced oil recovery or for sequestration. The analysis considers a complete power plant layout, including an air separation unit, compressors and intercoolers for oxygen and methane compression, a gas generator, three steam turbines, a reheater, two preheaters, a condenser, and a pumping system to pump the carbon dioxide to the pressure required for sequestration. This analysis is based on a 400 MW electric power generating plant that uses turbines that are currently under development by a U.S. turbine manufacturer. The high-pressure turbine operates at a temperature of 1089 K (1500°F) with uncooled blades, the intermediate-pressure turbine operates at 1478 K (2200°F) with cooled blades and the low-pressure turbine operates at 998 K (1336°F). The power plant has a net thermal efficiency of 46.5%. This efficiency is based on the lower heating value of methane, and includes the energy necessary for air separation and for carbon dioxide separation and sequestration.


2019 ◽  
Vol 1 (1) ◽  
pp. 325-340 ◽  
Author(s):  
Dan Fernandes ◽  
Song Wang ◽  
Qiang Xu ◽  
Russel Buss ◽  
Daniel Chen

The Allam cycle is the latest advancement in power generation technologies with a high cycle efficiency, zero NOx emission, and carbon dioxide available at pipeline specification for sequestration and utilization. The Allam cycle plant is a semi-closed, direct-fired, oxy-fuel Brayton cycle that uses high pressure supercritical carbon dioxide as a working fluid with sophisticated heat recuperation. This paper conducted process analyses including exergy analysis, sensitivity analysis, air separation unit (ASU) oxygen pump/compressor option analysis, and carbon footprint analysis for the integrated Allam power plant (natural gas)/ASU complex with a high degree of heat and work integration. Earlier works on exergy analysis were done on the Allam cycle and ASU independently. Exergy analysis on the integrated plants helps identify the equipment with the largest loss of thermodynamic efficiency. Sensitivity analysis investigated the effects of important ASU operational parameters along with equipment constraint limits on the downstream Allam cycle. Energy efficiency and carbon footprint are compared among the state-of-the-art fossil-fuel power generation cycles.


Author(s):  
Soheil Fouladi ◽  
Hamid Saffari

In this paper, the thermodynamic modelling of a gas turbine power plant in Iran is performed. Also, a computer code has been developed based on Matlab software. Moreover, both exergy and exergoeconomic analysis of this power plant have been conducted. To have a good insight into this study, the effects of key parameters such as compressor pressure ratio, gas turbine inlet temperature (TIT), compressor and turbine isentropic efficiency on the total exergy destruction, total exergy efficiency as well as total cost of exergy destruction have been performed. The modelling results have been compared with an actual running power plant located in Yazd city, Iran. The results of developed code have shown reasonable agreement between the simulation code results and experimental data obtained from power plant. The exergy analysis revealed that the combustion chamber is the must exergy destructor in comparison with other components. Also, its exergy efficiency is less than other components. This is due to the high temperature difference between working fluid and burner temperature. In addition, it was found that by the increase of TIT, the exergy destruction of this component can be reduced. On the other hand, the cost of exergy destruction is high for the combustion chamber. The effects of design parameters on exergy efficiency have shown that increase in the air compressor ratio and TIT, increases the total exergy efficiency of the cycle. Furthermore, the results have revealed that by the increase of TIT by 350°C, the cost of exergy destruction is decreased about 22%. Therefore, TIT is the best option to improve the cycle losses. In addition, an optimization using a genetic algorithm has been conducted to find the optimal solution of the plant.


Author(s):  
Carl-W. Hustad ◽  
Inge Trondstad ◽  
Roger E. Anderson ◽  
Keith L. Pronske ◽  
Fermin Viteri

In Aug 2004 the Zero Emission Norwegian Gas (ZENG) project team completed Phase-1: Concept and Feasibility Study for a 40 MW Pilot & Demonstration (P&D) Plant, that is proposed will be located at the Energy Park, Risavika, near Stavanger in South Norway during 2008. The power plant cycle is based upon implementation of the natural gas (NG) and oxygen fueled Gas Generator (GG) (1500°F/1500 psi) successfully demonstrated by Clean Energy Systems (CES) Inc. The GG operations was originally tested in Feb 2003 and is currently (Feb 2005) undergoing extensive commissioning at the CES 5MW Kimberlina Test Plant, near Bakersfield, California. The ZENG P&D Plant will be an important next step in an accelerating path towards demonstrating large-scale (+200 MW) commercial implementation of zero-emission power plants before the end of this decade. However, development work also entails having a detailed commercial understanding of the techno-economic potential for such power plant cycles: specifically in an environment where the future penalty for carbon dioxide (CO2) emissions remains uncertain. Work done in dialogue with suppliers during ZENG Project Phase-1 has cost-estimated all major plant components to a level commensurate with engineering pre-screening. The study has also identified several features of the proposed power plant that has enabled improvements in thermodynamic efficiency from 37% up to present level of 44–46% without compromising the criteria of implementation using “near-term” available technology. The work has investigated: i. Integration between the cryogenic air separation unit (ASU) and the power plant. ii. Use of gas turbine technology for the intermediate pressure (IP) steam turbine. iii. Optimal use of turbo-expanders and heat-exchangers to mitigate the power consumption incurred for oxygen production. iv. Improved condenser design for more efficient CO2 separation and removal. v. Sensitivity of process design criteria to “small” variations in modeling of the physical properties for CO2/steam working fluid near saturation. vi. Use of a second “conventional” pure steam Rankine bottoming cycle. In future analysis, not all these improvements need necessarily be seen to be cost-effective when taking into account total P&D program objectives; thermodynamic efficiency, power plant investment, operations and maintenance cost. However, they do represent important considerations towards “total” optimization when designing the P&D Plant. We observe that Project Phase-2: Pre-Engineering & Qualification should focus on optimization of plant size with respect to total capital investment (CAPEX); and identification of further opportunities for extended technology migration from gas turbine environment that could also permit raised turbine inlet temperatures (TIT).


1997 ◽  
Vol 119 (2) ◽  
pp. 285-290 ◽  
Author(s):  
E. D. Larson ◽  
C. I. Marrison

This paper assesses the scales at which commercial, first-generation biomass integrated-gasifier/gas turbine combined cycle (BIG/GTCC) technology is likely to be most economic when fueled by plantation-derived biomass. First-generation BIG/GTCC systems are likely to be commercially offered by vendors beginning around 2000 and will be based on either pressurized or atmospheric-pressure gasification. Both plant configurations are considered here, with estimates of capital and operating costs drawn from published and other sources. Prospective costs of a farm-grown energy crop (switchgrass) delivered to a power plant are developed with the aid of a geographic information system (GIS) for agricultural regions in the North Central and Southeast US in the year 2000 and 2020. A simplified approach is applied to estimate the cost of delivering chipped eucalyptus from an existing plantation in Northeast Brazil. The “optimum” capacity (MWopt), defined as that which yields the minimum calculated cost of electricity (COEm), varies by geographic region due to differences in delivered biomass costs. With pressurized BIG/GTCC plants, MWopt is in the range of 230–320 MWe for the sites considered, assuming most of the land around the power plant is farmed for energy crop production. For atmospheric-pressure BIG/GTCC plants, MWopt ranges from 110 to 142 MWe. When a lower fraction of the land around a plant is used for energy farming, values for MWopt are smaller than these. In all cases, the cost of electricity is relatively insensitive to plant capacity over a wide range around MWopt.


Author(s):  
Inaki Ulizar ◽  
Pericles Pilidis

The main performance features of a semiclosed cycle gas turbine with carbon dioxide-argon working fluid are described here. This machine is designed to employ coal synthetic gas fuel and to produce no emissions. The present paper outlines three tasks carried out. Firstly the selection of main engine variables, mainly pressure and temperature ratios. Then a sizing exercise is carried out where many details of its physical appearance are outlined. Finally the off-design performance of the engine is predicted. This two spool gas turbine is purpose built for the working fluid, so its physical characteristics reflect this requirement. The cycle is designed with a turbine entry temperature of 1650 K and the optimum pressure ratio is found to be around 60. Two major alternatives are examined, the simple and the precooled cycle. A large amount of nitrogen is produced by the air separation plant associated with this gas turbine and the coal gasifier. An investigation has been made on how to use this nitrogen to improve the performance of the engine by precooling the compressor, cooling the turbine nozzle guide vanes and using it to cool the delivery of the low pressure compressor. The efficiencies of the whole plant have been computed, taking into account the energy requirements of the gasifier and the need to dispose of the excess carbon dioxide. Hence the overall efficiencies indicated here are of the order of 40 percent. This is a low efficiency by current standards, but the fuel employed is coal and no emissions are produced.


Sign in / Sign up

Export Citation Format

Share Document